Topic Review
Compositional Engineering of Perovskites
We give a systematic overview of compositional engineering by distinguishing the different defect-reducing mechanisms. Doping effects are divided into influences on: (1) crystallization; (2) lattice properties. Incorporation of dopant influences the lattice properties by: (a) lattice strain relaxation; (b) chemical bonding enhancement; (c) band gap tuning. The intrinsic lattice strain in undoped perovskite was shown to induce vacancy formation. The incorporation of smaller ions, such as Cl, F and Cd, increases the energy for vacancy formation. Zn doping is reported to induce strain relaxation but also to enhance the chemical bonding. The combination of computational studies using (DFT) calculations quantifying and qualifying the defect-reducing propensities of different dopants with experimental studies is essential for a deeper understanding and unraveling insights, such as the dynamics of iodine vacancies and the photochemistry of the iodine interstitials, and can eventually lead to a more rational approach in the search for optimal photovoltaic materials.
  • 2.6K
  • 28 Oct 2020
Topic Review
Xeno Nucleic Acid
Xeno nucleic acid (XNA) is a synthetic alternative to the natural nucleic acids DNA and RNA as information-storing biopolymers that differs in the sugar backbone. As of 2011, at least six types of synthetic sugars have been shown to form nucleic acid backbones that can store and retrieve genetic information. Research is now being done to create synthetic polymerases to transform XNA. The study of its production and application has created a field known as xenobiology. Although the genetic information is still stored in the four canonical base pairs (unlike other nucleic acid analogues), natural DNA polymerases cannot read and duplicate this information. Thus the genetic information stored in XNA is "invisible" and therefore useless to natural DNA-based organisms.
  • 2.6K
  • 01 Nov 2022
Topic Review
Graphene, Graphene-Derivatives and Composites
Graphene has accomplished huge notoriety and interest from the universe of science considering its exceptional mechanical, physical and thermal properties. Graphene is an allotrope of carbon having one atom thick size and planar sheets thickly stuffed in a lattice structure resembling a honeycomb structure. Numerous methods to prepare graphene have been created throughout a limited span of time. Due to its fascinating properties, it has found some extensive applications to a wide variety of fields. So, we believe there is a necessity to produce a document of the outstanding methods and some of the novel applications of graphene. 
  • 2.6K
  • 09 Oct 2021
Topic Review
Dental-Enamel Junction
Dentin-enamel junction (DEJ) is the boundary layer located between dentin and covering enamel. DEJ has a distinct chemical, mechanical and energetical features than surrounding tissues. Its role lies in the transport of materials between dentin and enamel. At the same time DEJ, mainly due to its scalloped structure, protects the dentin against diffusing of mechanical shocks originating at the enamel boundary.
  • 2.6K
  • 16 Jun 2021
Topic Review
Reverse Water Gas Shift Reaction
The catalytic conversion of CO2 to CO by the reverse water gas shift (RWGS) reaction followed by well-established synthesis gas conversion technologies could be a practical technique to convert CO2 to valuable chemicals and fuels in industrial settings. For catalyst developers, prevention of side reactions like methanation, low-temperature activity, and selectivity enhancements for the RWGS reaction are crucial concerns. Cerium oxide (ceria, CeO2) has received considerable attention due to its exceptional physical and chemical properties. 
  • 2.6K
  • 09 Oct 2022
Topic Review
CO2 Activation on Catalyst Surfaces
Utilizing CO2 as a sustainable carbon source to form valuable products requires activating it by active sites on catalyst surfaces. These active sites are usually in or below the nanometer scale. Some metals and metal oxides in this scale dimension can catalyze the CO2 transformation reactions. Herein, CO2 activation on metal-based catalyst surfaces and how their structures impact the activation process are highlighted.
  • 2.6K
  • 13 Dec 2021
Topic Review
Salt Bridges investigated by NMR
Salt bridges are interactions, electrostatic combined with hydrogen bonding, between oppositely charged residues, typically carboxylic acid anions and ammonium ions, provided they are close together.  For an illustration see Fig. 1. Salt bridges are of particular interest in proteins and other biomolecules.  In the present contribution salt bridges are investigated by means of 1H chemical shifts, determination of pKa values and deuterium isotope effect on 15N and 1H chemical shifts.  In the latter case model compounds like ammonium ions are also investigated and the use of deuterium isotope effects on chemical shifts are supported by Density Functional Theory (DFT) calculations.  The use of isotope effects on chemical shifts enables a distinction between salt bridges observed in the solid state by X-ray diffraction and those actually present in solution.
  • 2.6K
  • 27 Oct 2020
Topic Review
Synthesis of Silver Nanoparticles
Silver nanoparticles, also known as AgNPs, have been extensively researched due to their one-of-a-kind characteristics, including their optical, antibacterial, and electrical capabilities. In the era of the antibiotics crisis, with an increase in antimicrobial resistance (AMR) and a decrease in newly developed drugs, AgNPs are potential candidates because of their substantial antimicrobial activity, limited resistance development, and extensive synergistic effect when combined with other drugs.
  • 2.6K
  • 13 Sep 2023
Topic Review
Laser Melting Deposition
Ceramics and ceramic-reinforced metal matrix composites (CMMCs) demonstrate high wear resistance, excellent chemical inertness, and exceptional properties at elevated temperatures. These characteristics are suitable for their utilization in biomedical, aerospace, electronics, and other high-end engineering industries. The aforementioned performances make them difficult to fabricate via conventional manufacturing methods, requiring high costs and energy consumption. To overcome these issues, laser additive manufacturing (LAM) techniques, with high-power laser beams, were developed and extensively employed for processing ceramics and ceramic-reinforced CMMCs-based coatings. In respect to other LAM processes, laser melting deposition (LMD) excels in several aspects, such as high coating efficiency and lower labor cost. Nevertheless, difficulties such as poor bonding between coating and substrate, cracking, and reduced toughness are still encountered in some LMD coatings.
  • 2.5K
  • 24 Mar 2021
Topic Review
Austenite Stability
The austenite stability represents the potential of metastable austenite grains in resisting the martensitic phase transformation under an applied either thermal or mechanical driving force. 
  • 2.5K
  • 18 Aug 2020
  • Page
  • of
  • 467
Video Production Service