Topic Review
Electrochemical Biosensors for Pathogen Detection
Electrochemical biosensors are a family of biosensors that use an electrochemical transducer to perform their functions. In recent decades, many electrochemical biosensors have been created for pathogen detection. These biosensors for detecting infections have been comprehensively studied in terms of transduction elements, biorecognition components, and electrochemical methods. The integration of transducers and electrode changes in biosensor design is a major discussion topic. Pathogen detection methods can be categorized by sample preparation and secondary binding processes. Diagnostics in medicine, environmental monitoring, and biothreat detection can benefit from electrochemical biosensors to ensure food and water safety.
  • 835
  • 02 Nov 2022
Topic Review
Graphene-Based Cathode Materials for Lithium-Ion Capacitors
Lithium-ion capacitors (LICs) are attracting increasing attention because of their potential to bridge the electrochemical performance gap between batteries and supercapacitors. LICs are still impeded by their inferior energy density, which is mainly due to the low capacity of the cathode. Graphene-based nanomaterials have been recognized as one of the most promising cathodes for LICs due to their unique properties, and exciting progress has been achieved. 
  • 834
  • 13 Dec 2021
Topic Review
Cardioprotective Activity of Polyphenols
Polyphenols have recently gained popularity among the general public as products and diets classified as healthy and containing naturally occurring phenols. Many polyphenolic extracts are available on the market as dietary supplements, functional foods, or cosmetics, taking advantage of clients' desire to live a healthier and longer life.   
  • 834
  • 29 Dec 2020
Topic Review
Red Cabbage Anthocyanins in Smart Food Packaging, Sensors
Anthocyanins, as one of the water-soluble phenolic compounds, are able to generate a wide range of colors (for example, blue, purple, orange, and red) that are widely isolated from flowers, cereals, fruits, and vegetables. In addition, based on the pH values of the solution, anthocyanins can be found in different colors and chemical forms that can monitor food quality parameters, and eventually, keep track of food products over the shelf life period. The reversible color attributes of anthocyanins-rich solutions are associated with the source, composition, and configuration of anthocyanins.
  • 834
  • 28 Apr 2022
Topic Review
Ring-Fused Benzimidazoles and Imidazobenzimidazoles
The entry covers the synthesis and biological activity of ring-fused benzimidazoles, imidazo[4,5-f]benzimidazoles and imidazo[5,4-f]benzimidazoles. Compounds are bioreductive antitumor agents when the fused benzene part is a quinone or iminoquinone. Reactions are categorized according to the cyclization reaction, and include oxidative cyclizations using the t-amino effect. Other cyclizations are onto the 1- and 2-positions of benzimidazoles using cross-dehydrogenative coupling and homolytic aromatic substitution. Many syntheses are transition metal mediated, but others are metal-free using thermal, electrochemical and photochemical conditions.
  • 834
  • 11 May 2021
Topic Review
Solid Polymer and Composite Electrolytes
All-solid-state lithium batteries (ASSLB) are very promising for the future development of next generation lithium battery systems due to their increased energy density and improved safety. ASSLB employing Solid Polymer Electrolytes (SPE) and Solid Composite Electrolytes (SCE) in particular have attracted significant attention.
  • 834
  • 04 Aug 2021
Topic Review
Electrospun Polymer Nanofibers in Photocatalytic Hybrid Materials
A wide variety of materials, strategies, and methods have been proposed to face the challenge of wastewater pollution. The most innovative and promising approaches include the hybrid materials made of polymeric nanofibers and photocatalytic nanoparticles. Electrospun nanofibers with unique properties, such as nanosized diameter, large specific surface area, and high aspect ratio, represent promising materials to support and stabilize photocatalytic nanosized semiconductors. Additionally, the role performed by polymer nanofibers can be extended even further since they can act as an active medium for the in situ synthesis of photocatalytic metal nanoparticles or contribute to pollutant adsorption, facilitating their approach to the photocatalytic sites and their subsequent photodegradation. 
  • 832
  • 10 Mar 2022
Topic Review
Annatto
Annatto (/əˈnætoʊ/ or /əˈnɑːtoʊ/) is an orange-red condiment and food coloring derived from the seeds of the achiote tree (Bixa orellana), native to tropical America. It is often used to impart a yellow or orange color to foods, but sometimes also for its flavor and aroma. Its scent is described as "slightly peppery with a hint of nutmeg" and flavor as "slightly nutty, sweet and peppery". The color of annatto comes from various carotenoid pigments, mainly bixin and norbixin, found in the reddish waxy coating of the seeds. The condiment is typically prepared by grinding the seeds to a powder or paste. Similar effects can be obtained by extracting some of the color and flavor principles from the seeds with hot water, oil, or lard, which are then added to the food. Annatto and its extracts are now widely used in an artisanal or industrial scale as a coloring agent in many processed food products, such as cheeses, dairy spreads, butter and margarine, custards, cakes and other baked goods, potatoes, snack foods, breakfast cereals, smoked fish, sausages, and more. In these uses, annatto is a natural alternative to synthetic food coloring compounds, but it has been linked to rare cases of food-related allergies. Annatto is of particular commercial value in the United States because the Food and Drug Administration considers colorants derived from it to be "exempt of certification".
  • 833
  • 20 Oct 2022
Topic Review
Chitosan-Based Polyurethane Flexible Foams
Polyurethane (PUR) foam is a synthetic polymer.
  • 833
  • 14 Sep 2021
Topic Review
Binding Materials for MOF Monolith Shaping Processes
The fabrication of porous Metal Organic Framework materials within resistant structures is a key challenge impeding their wide commercial use for processes such as adsorptive separation. In fact, the integration of nano-scale Metal–organic frameworks (MOFs)  crystallic structures into bulk components that can maintain the desired characteristics, for example, size, shape, and mechanical stability, is a prerequisite for their wide practical use in many applications. At the same time, it requires sophisticated shaping techniques that can structure nano/micro-crystalline fine powders of MOFs into diverse types of macroscopic bodies such as monoliths.
  • 833
  • 01 Mar 2022
  • Page
  • of
  • 467
ScholarVision Creations