Topic Review
Design of Experiments in the Advancement of Biomaterial
Optimisation of tissue engineering (TE) processes requires models that can identify relationships between the parameters to be optimised and predict structural and performance outcomes from both physical and chemical processes. Design of Experiments (DoE) methods are commonly used for optimisation purposes in addition to playing an important role in statistical quality control and systematic randomisation for experiment planning. DoE is only used for the analysis and optimisation of quantitative data (i.e., number-based, countable or measurable), while it lacks the suitability for imaging and high dimensional data analysis.
  • 859
  • 18 Jan 2023
Topic Review
Transition Metal Oxide Electrode Materials
The rising use of nonrenewable fossil fuels in recent decades has put human existence in grave danger. As a result, it is imperative to design environmentally friendly and cost-effective energy storage devices. Supercapacitors are a promising energy device because of their high power density, outstanding cycle stability, and quick charge/discharge process. However, supercapacitors' energy density is still lower than that of conventional batteries'. Supercapacitors' electrochemical performance is heavily influenced by the electrode materials, as is well-known to everyone.
  • 859
  • 19 Apr 2022
Topic Review
Crossover Experiment
In chemistry, a crossover experiment is a method used to study the mechanism of a chemical reaction. In a crossover experiment, two similar but distinguishable reactants simultaneously undergo a reaction as part of the same reaction mixture. The products formed will either correspond directly to one of the two reactants (non-crossover products) or will include components of both reactants (crossover products). The aim of a crossover experiment is to determine whether or not a reaction process involves a stage where the components of each reactant have an opportunity to exchange with each other. The results of crossover experiments are often straightforward to analyze, making them one of the most useful and most frequently applied methods of mechanistic study. In organic chemistry, crossover experiments are most often used to distinguish between intramolecular and intermolecular reactions. Inorganic and organometallic chemists rely heavily on crossover experiments, and in particular isotopic labeling experiments, for support or contradiction of proposed mechanisms. When the mechanism being investigated is more complicated than an intra- or intermolecular substitution or rearrangement, crossover experiment design can itself become a challenging question. A well-designed crossover experiment can lead to conclusions about a mechanism that would otherwise be impossible to make. Many mechanistic studies include both crossover experiments and measurements of rate and kinetic isotope effects.
  • 858
  • 28 Oct 2022
Topic Review
Nanocomposite materials for Wound Healing
Materials science is a field in which nanotechnology is being greatly explored, due to how much the bulk and surface properties previously mentioned, such as structural tunability, functionalization, and physicochemical stability, etc., are observed to change with diverse synthetization protocols in order to form customized nanostructured materials. Materials properties, such as shape, size, crystal structure, and surface roughness, can be taken advantage of and are currently being applied to practically any area of the biomedical field, such as wound healing and drug delivery around the globe with exceedingly successful results. The use of nanostructured materials in the form of nanoparticles, nanofibers, and any shape given at the nanoscale (1–100 nm), applied towards biotechnological and/or biomedical applications, such as wound healing, treatment of emerging pollutants, and drug delivery, has been exponentially growing over the past few decades.
  • 858
  • 27 May 2021
Topic Review
Functional Pyrazolo[1,5-a]pyrimidines
Pyrazolo[1,5-a]pyrimidine (PP) derivatives are an enormous family of N-heterocyclic compounds that possess a high impact in medicinal chemistry and have attracted a great deal of attention in material science recently due to their significant photophysical properties.
  • 857
  • 14 Jul 2021
Topic Review
Photothermal Therapy Mediated by Nanomaterial
Photothermal therapy (PTT) mediated by nanomaterial has become an attractive tumor treatment method due to its obvious advantages. Among various nanomaterials, melanin-like nanoparticles with nature biocompatibility and photothermal conversion properties have attracted more and more attention. Melanin is a natural biological macromolecule widely distributed in the body and displays many fascinating physicochemical properties such as excellent biocompatibility and prominent photothermal conversion ability. Due to the similar properties, Melanin-like nanoparticles have been extensively studied and become promising candidates for clinical application.
  • 857
  • 29 Jan 2021
Topic Review
“Brick-and-Mortar” Composites Made of 2D Carbon Nanoparticles
Among all biomimetic materials, nacre has drawn great attention from the scientific community, thanks to superior levels of strength and toughness and its brick-and-mortar (B&M) architecture. However, achieving the desired performances is challenging since the mechanical response of the material is influenced by many factors, such as the filler content, the matrix molecular mobility and the compatibility between the two phases. Most importantly, the properties of a macroscopic bulk material strongly depend on the interaction at atomic levels and on their synergetic effect. In particular, the formation of highly-ordered brick-and-mortar structures depends on the interaction forces between the two phases. Consequently, poor mechanical performances of the material are associated with interface issues and low stress transfer from the matrix to the nanoparticles. Therefore, improvement of the interface at the chemical level enhances the mechanical response of the material. 
  • 857
  • 27 Apr 2022
Topic Review
Targeted Delivery of Exosomes to the Brain
Delivering therapeutics to the central nervous system (CNS) is difficult because of the blood–brain barrier (BBB). Therapeutic delivery across the tight junctions of the BBB can be achieved through various endogenous transportation mechanisms. Receptor-mediated transcytosis (RMT) is one of the most widely investigated and used methods. Drugs can hijack RMT by expressing specific ligands that bind to receptors mediating transcytosis, such as the transferrin receptor (TfR), low-density lipoprotein receptor (LDLR), and insulin receptor (INSR). Cell-penetrating peptides and viral components originating from neurotropic viruses can also be utilized for the efficient BBB crossing of therapeutics. Exosomes, or small extracellular vesicles, have gained attention as natural nanoparticles for treating CNS diseases, owing to their potential for natural BBB crossing and broad surface engineering capability. RMT-mediated transport of exosomes expressing ligands such as LDLR-targeting apolipoprotein B has shown promising results.
  • 858
  • 13 May 2022
Topic Review
Mechanism of Heterogeneous Alkaline Deacetylation of Chitin
Chitosan can be obtained from chitin chemically or by using enzymatic preparations. From a chemical point of view, both acids and alkalis can be used to deacetylate chitin. However, alkaline deacetylation is used more often since glycosidic bonds are very sensitive to an acidic environment, in which they are destroyed. A mechanism for the chitin deacetylation reaction is proposed, taking into account its kinetic features in which the decisive role is assigned to the effects of hydration. It has been shown that the rate of chitin deacetylation increases with a decrease in the degree of hydration of hydroxide ions in a concentrated alkali solution. When the alkali concentration is less than the limit of complete hydration, the reaction practically does not occur. Hypotheses have been put forward to explain the decrease in the rate of the reaction in the second flat portion of the kinetic curve. The first hypothesis is the formation of “free” water, leading to the hydration of chitin molecules and a decrease in the reaction rate. The second hypothesis postulates the formation of a stable amide anion of chitosan, which prevents the nucleophilic attack of the chitin macromolecule by hydroxide ions.
  • 857
  • 19 Jun 2023
Topic Review
MXenes as Electrode Materials for Supercapacitors
MXenes have been considered to be potential building blocks for composites for use in energy storage applications due to their distinctive 2D wafer structure and superior electrical conductivity. MXenes have been combined with multiple active ingredients, including metal oxides and conductive polymers, to produce a synergistic effect. The synthesis method of MXene shows various surface termini and topographies with different energy storage properties, and there have been multiple studies examining surface modification, stoichiometric ratio, and electrode composition control.
  • 857
  • 09 Mar 2023
  • Page
  • of
  • 467
ScholarVision Creations