Topic Review
Polymeric Pipeline Coatings Time-Dependent Performance
The barrier performance of organic coatings is a direct function of mass transport and long-term stability of the polymeric structure. A predictive assessment of the protective coating cannot be conducted a priori of degradation effects on transport. Epoxy-based powder coatings are an attractive class of coatings for pipelines and other structures because application processing times are low and residual stresses between polymer layers are reduced. 
  • 861
  • 27 May 2021
Topic Review
Vancomycin with Muramyl Pentapeptide
Vancomycin and a native muramyl pentapeptide ended with D-alanine (MPP-D-Ala), and vancomycin and a modified muramyl pentapeptide ended with D-serine (MPP-D-Ser) form complexes in a very specific way. This complexes provide a basis for characterizing the type and stability of the connection. The type of experimentally measured and computer-simulated interactions opens the field for discussion on possible modifications to the structure of vancomycin or muramyl pentapeptide to obtain their desired characteristics.
  • 860
  • 07 Feb 2022
Topic Review
Classification and Applications of 2D Xenes
Single-element-based 2D materials (Xenes) have garnered tremendous interest. At present, 16 kinds of Xenes (silicene, borophene, germanene, phosphorene, tellurene, etc.) have been explored, mainly distributed in the third, fourth, fifth, and sixth main groups. Although two Xenes (aluminene and indiene) have not been synthesized due to the limitations of synthetic methods and the stability of Xenes, other Xenes have been successfully created via elaborate artificial design and synthesis. Elemental 2D materials show potential applications in various fields, including spintronics, electronics, optoelectronics, superconducting, photovoltaics, sensors, catalysis, and biomedicines.
  • 860
  • 12 Jan 2023
Topic Review
Riboflavin-Induced Photochemistry
Riboflavin (RF), which is also known as vitamin B2, is a water-soluble vitamin. RF is a nontoxic and biocompatible natural substance. It absorbs light (at wavelengths of 380 and 450 nm) in the presence of oxygen to form reactive singlet oxygen (1O2). The generated singlet oxygen acts as a photoinitiator to induce the oxidation of biomolecules, such as amino acids, proteins, and nucleotides, or to initiate chemical reactions, such as the thiol-ene reaction and crosslinking of tyramine and furfuryl groups. 
  • 860
  • 23 Feb 2023
Topic Review
Cluster-Based Coordination Polymers
Cluster-based coordination polymers (CCPs) are constructed from metal coordination clusters that are bridged by polytopic organic ligands forming multidimensional systems such as one-dimensional (1D) chains, two-dimensional (2D) layers, and three-dimensional (3D) metal-organic frameworks. Structurally well-defined polynuclear Mn(II,III)/Fe(III)-oxo pivalate and isobutyrate clusters recommend them-selves as extremely versatille building blocks where their ancillary coordination ligands are sufficiently flexible to allow the formation of a wide variety of 1D, 2D and 3D CCPs.
  • 860
  • 07 May 2021
Topic Review
Chemically Activated Glass-Ionomer Cements as Bioactive Materials
Glass-ionomer cement (GIC) is a long-established restorative dental material with several clinical applications that have remained relevant because of the chemical adhesive bond it forms at the tooth-restoration interface and its fluoride-releasing and recharging properties. It was invented by Wilson and Kent in 1969 and successfully introduced into clinical practice in 1972. Chemically activated GICs, commonly referred to as conventional GICs, typically consist of ion-leachable glasses based on calcium or strontium alumino-fluorosilicate and weak polymeric water-soluble acids of polyacrylic acid (PAA) homopolymer, or acrylic acid, maleic/itaconic acid copolymer. They set by an acid-base reaction, and the setting reaction is initiated by mixing glass powder and polymeric acids. 
  • 860
  • 30 Mar 2023
Topic Review
Smart Porous Multi-Stimulus Polysaccharide-Based Biomaterials
Recently, tissue engineering and regenerative medicine studies have evaluated smart biomaterials as implantable scaffolds and their interaction with cells for biomedical applications. Porous materials have been used in tissue engineering as synthetic extracellular matrices, promoting the attachment and migration of host cells to induce the in vitro regeneration of different tissues. Biomimetic 3D scaffold systems allow control over biophysical and biochemical cues, modulating the extracellular environment through mechanical, electrical, and biochemical stimulation of cells, driving their molecular reprogramming. In this review, first we outline the main advantages of using polysaccharides as raw materials for porous scaffolds, as well as the most common processing pathways to obtain the adequate textural properties, allowing the integration and attachment of cells. The second approach focuses on the tunable characteristics of the synthetic matrix, emphasizing the effect of their mechanical properties and the modification with conducting polymers in the cell response. The use and influence of polysaccharide-based porous materials as drug delivery systems for biochemical stimulation of cells is also described. Overall, engineered biomaterials are proposed as an effective strategy to improve in vitro tissue regeneration and future research directions of modified polysaccharide-based materials in the biomedical field are suggested.
  • 860
  • 24 Nov 2020
Topic Review
Methods of Thermal Treatment of Radioactive Waste
Nuclear power is generated by a small amount of fuel, as related to other non-renewable energy sources. The volume of waste formed in this process is comparably small. Thermal treatment of waste is a term given to any treatment technology that involves high temperatures in the processing of the waste feedstock. All the thermal treatment methods used for normal waste have been applied to radioactive waste.  
  • 860
  • 24 Jan 2022
Topic Review
Ellagic Acid
Polyphenol ellagic acid (EA) possesses antioxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and cardio protection activities, making it an interesting multi-targeting profile. EA also controls the central nervous system (CNS), since it was proven to reduce the immobility time of mice in both the forced swimming and the tail-suspension tests, with an efficiency comparable to that of classic antidepressants. The proposed mechanism revealed that EA mimics clonidine at the presynaptic release-regulating α2 autoreceptors in hippocampal noradrenergic nerve endings.
  • 860
  • 24 Nov 2021
Topic Review
Fabrication and Biomedical Applications of Functional Nanoporous Materials
Functional nanoporous materials are categorized as an important class of nanostructured materials because of their tunable porosity and pore geometry (size, shape, and distribution) and their unique chemical and physical properties as compared with other nanostructures and bulk counterparts. Progress in developing a broad spectrum of nanoporous materials has accelerated their use for extensive applications in catalysis, sensing, separation, and environmental, energy, and biomedical areas. 
  • 859
  • 16 Mar 2022
  • Page
  • of
  • 467
ScholarVision Creations