Topic Review
Bio-Inspired Hierarchical Fibres
Several naturally occurring biological systems, such as bones, nacre or wood, display hierarchical architectures with a central role of the nanostructuration that allows reaching amazing properties such as high strength and toughness. Developing such architectures in man-made materials is highly challenging, and recent research relies on this concept of hierarchical structures to design high-performance composite materials. This review deals more specifically with the development of hierarchical fibres by the deposition of nano-objects at their surface to tailor the fibre/matrix interphase in (bio)composites. Fully synthetic hierarchical fibre reinforced composites are described, and the potential of hierarchical fibres is discussed for the development of sustainable biocomposite materials with enhanced structural performance. Based on various surface, microstructural and mechanical characterizations, this review highlights that nano-objects coated on natural fibres (carbonnanotubes, ZnO nanowires, nanocelluloses) can improve the load transfer and interfacial adhesion between the matrix and the fibres, and the resulting mechanical performances of biocomposites. Indeed, the surface topography of the fibres is modified with higher roughness and specific surface area, implying increased mechanical interlocking with the matrix. As a result, the interfacial shear strength (IFSS) between fibres and polymer matrices is enhanced, and failure mechanisms can bemodified with a crack propagation occurring through a zig-zag path along interphases.
  • 1.0K
  • 29 May 2021
Topic Review
Non-Helical Models of DNA Structure
In the history of molecular biology, non-helical or "side-by-side" models of DNA were proposed in the 1970s as a challenge to the standard double-helical model. The non-helical models attempted to solve problems relating to the topology of circular DNA chromosomes during replication. These theories were briefly considered seriously as a minority viewpoint, but they were later largely rejected due to X-ray crystallography of DNA duplexes and later the nucleosome core particle, as well as the discovery of topoisomerases, and these non-double-helical models are not currently accepted by the mainstream scientific community.
  • 1.0K
  • 12 May 2023
Topic Review
Capacitive Field-Effect Bio-Chemical Sensors
       Electrolyte-insulator-semiconductor (EIS) field-effect sensors belong to a new generation of electronic chips for biochemical sensing, enabling a direct electronic readout. The review gives an overview on recent advances and current trends in the research and development of chemical sensors and biosensors based on the capacitive field-effect EIS structure—the simplest field-effect device, which represents a biochemically sensitive capacitor. Fundamental concepts, physicochemical phenomena underlying the transduction mechanism and application of capacitive EIS sensors for the detection of pH, ion concentrations, and enzymatic reactions, as well as the label-free detection of charged molecules (nucleic acids, proteins, and polyelectrolytes) and nanoparticles, are presented and discussed.
  • 1.0K
  • 19 Apr 2022
Topic Review
TMCs, TMNs as LOB catalyst
A large volume of research on lithium–oxygen (Li–O2) batteries (LOBs) has been conducted in the recent decades, inspired by their high energy density and power density. However, these future generation energy-storage devices are still subject to technical limitations, including a squat round-trip efficiency and a deprived rate-capability, due to the slow-moving electrochemical kinetics of both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) over the surface of the cathode catalyst. Because the electrochemistry of LOBs is rather complex, only a limited range of cathode catalysts has been employed in the past. To understand the catalytic mechanisms involved and improve overall cell performance, the development of new cathode electrocatalysts with enhanced round-trip efficiency is extremely important. In this context, transition metal carbides and nitrides (TMCs and TMNs, respectively) have been explored as potential catalysts to overcome the slow kinetics of electrochemical reactions.  
  • 1.0K
  • 23 Nov 2020
Topic Review
Nitroaromatic Antibiotics
Nitroaromatic antibiotics show activity against anaerobic bacteria and parasites, finding use in the treatment of Heliobacter pylori infections, tuberculosis, trichomoniasis, human African trypanosomiasis, Chagas disease and leishmaniasis.
  • 1.0K
  • 01 Apr 2021
Topic Review
Photocatalytic Activity of Cobalt-Based Metal–Organic Frameworks
Nowadays, materials with great potential for environmental protection are being sought. Metal–organic frameworks, in particular those with cobalt species as active sites, have drawn considerable interest due to their excellent properties. With the use of Co-based metal–organic frameworks (MOFs) as photocatalysts in reactions (dye degradation, water oxidation and splitting, carbon dioxide reduction, in addition to the oxidation of organic compounds), even over 90% degradation efficiencies of various dyes (e.g., methylene blue) can be achieved. 
  • 1.0K
  • 18 Apr 2022
Topic Review
Silicon Nitride
Silicon nitride is a ceramic material with unique properties. These properties strongly encourage the use of monolithic silicon nitride and coatings as contemporary and future biomaterial for a variety of medical applications including spinal, orthopedic and dental implants, bone grafts and scaffolds, platforms for intelligent synthetic neural circuits, antibacterial and antiviral particles and coatings, optical biosensors, and nano-photonic waveguides for sophisticated medical diagnostic devices.
  • 1.0K
  • 17 May 2021
Topic Review
Hazards from Burning Impregnated Wood
In the construction industry, a variety wooden products have been used for thousands of years, according to demand, accessibility/availability, and customers’ requirements. Wood is a preferred material due to its large range of properties, depending on the type of wood. It is an easily available and economically competitive material, and also extremely strong in relation to its weight. Therefore, it is used in the production of construction materials, building parts, and finishing components, as well as for furniture and decorative elements. Each of these products is commonly additionally chemically treated to improve its performance parameters. But impregnated wooden products such as furniture and fence boards are often misused, including for house heating, waste incineration, bonfires. etc. For this reason, among the products of combustion there is a whole range of different chemical compounds, frequently carcinogenic, and dangerous for health and the environment, for example heavy metals. Knowledge in this field is important for professions such as: firefighter, lifeguard, people dealing with environmental management, units responsible for waste landfills. On the other hand, important recipients of this information are ordinary residents who, due to a lack of knowledge, use such materials as e.g. heating material.
  • 1.0K
  • 29 Oct 2020
Topic Review
Olive Mill Wastewater Remediation
Olive oil production in Mediterranean countries represents a crucial market, especially for Spain, Italy, and Greece. Waste generated from olive oil production processes can be divided into solid waste and olive mill wastewaters (OMWW). 
  • 1.0K
  • 31 Aug 2022
Topic Review
Sustainable Catalytic Pyranopyrazole Scaffolds’ Synthesis
Heterocycles are important components of many natural materials and are extremely valuable in organic and medicinal chemistry. Among the heterocyclic entities, pyranopyrazole moieties have demonstrated remarkable biochemical behaviours and activities which provide a versatile skeleton for drug innovation. Hence, many nitrogen-based, fused structures have been incorporated as building blocks of various pharmacological potent scaffolds. Pyranopyrazoles are known for their anti-inflammatory, analgesic, antidiabetic, antimicrobial, cholinesterase-inhibiting, antibacterial and anticancer activities, as well as for their efficacy in treating Alzheimer’s disease. Because of this, several cost-effective synthetic protocols for synthesising pyranopyrazole derivatives—utilising less expensive substrates, reusable catalysts, and eco-friendly solvents—have been developed.
  • 1.0K
  • 10 Jun 2021
  • Page
  • of
  • 467
ScholarVision Creations