Topic Review
RNA Aptamers
RNA aptamers are becoming increasingly attractive due to their superior properties. 
  • 1.2K
  • 18 Jun 2021
Topic Review
HiPIMS coatings for self-cleaning application: cyclic Reactive Green 12 degradation
We propose a new photocatalytic interface prepared by High-Power Impulse Magnetron Sputtering (HiPIMS) and investigated for the degradation of Reactive Green 12 (RG12) as target contaminant under visible light LEDs illumination. The CuxO/TiO2 nanoparticulate photocatalyst was sequentially sputtered on polyester (PES). The photocatalyst formulation was optimized by investigating the effect of different parameters such as: the sputtering time of CuxO, the applied current and the deposition mode (Direct Current Magnetron Sputtering, DCMS or HiPIMS). The results show that the fastest RG12 degradation was obtained on CuxO/TiO2 sample prepared at 40 A in HIPIMS mode under low intensity LEDs irradiation. The better self-cleaning efficiency of 53.4% within 360 min was found with 4 mg/L of RG12 initial concentration and 0.05 % Cuwt/PESwt as determined by X-ray Fluorescence. All the prepared samples contain a TiO2 under layer with 0.02% Tiwt/PESwt. By transmission electron microscopy (TEM), both layers were seen uniformly distributed on the PES fibers. The effect of the surface-area to volume (dye volume) ratio (SA/V) on the photocatalytic self-cleaning efficiency was also investigated for the discoloration of 4 mg/L RG12. The CuxO/TiO2 photocatalyst was found to have a good reusability and stability up to 21 cycles. Ions release were quantified by mean of inductively coupled plasma mass spectrometry (ICP-MS) showing low Cu-ions release.
  • 1.2K
  • 30 Oct 2020
Topic Review
Delivery Platforms for miRNA-Based Cancer Therapeutics
Restoration of microRNA (miRNA) expression or downregulation of aberrantly expressed miRNAs using miRNA mimics or anti-miRNA inhibitors (anti-miRs/antimiRs), respectively, continues to show therapeutic potential for the treatment of cancer. Although the manipulation of miRNA expression presents a promising therapeutic strategy for cancer treatment, it is predominantly reliant on nucleic acid-based molecules for their application, which introduces an array of hurdles, with respect to in vivo delivery. Because naked nucleic acids are quickly degraded and/or removed from the body, they require delivery vectors that can help overcome the many barriers presented upon their administration into the bloodstream.
  • 1.2K
  • 25 Aug 2022
Topic Review
Moist Rice Husk Smoldering for Silica Production
In order to assess the possibility of silica production via smoldering of moist rice husk, experiments of washed (moist) rice husk (7 kg with moisture content of 51%) in a newly designed smoldering apparatus was performed. The temperature inside the fuel bed during smoldering was recorded, and characteristics of ash were analyzed. Results showed that the highest temperature in the middle of the naturally piled fuel bed was about 560.0 °C, lower than those in most of combustors. Some volatiles from the lower part of the fuel bed adhere to its upper ash during piled smoldering. Silica content and specific surface area of ash from smoldering of washed (moist) rice husk were 86.4% and 84.9 m2/g, respectively.
  • 1.2K
  • 24 Jan 2022
Topic Review
pH Responsive Polyurethane for Biomedical and Drug Delivery
pH-responsive polymers are polymers that respond to changes in environmental pH. They can be classified into: (A) polymers with ionizable moieties; and (B) polymers that contain acid-labile linkages. pH-responsive polyurethanes demonstrated good biological response and sustainability in biomedical applications and drug delivery. They have been used as controlled drug delivery systems for oral administration, intravaginal administration, and targeted drug delivery systems for chemotherapy treatment. 
  • 1.2K
  • 12 May 2022
Topic Review
Fused 1,5-naphthyridines
Heterocyclic nitrogen compounds, including fused 1,5-naphthyridines, have versatile applications in synthetic organic chemistry and play an important role in the field of medicinal chemistry, as many of them have a wide range of biological activities. In this review, a wide range of synthetic protocols for the construction of this scaffold are presented. For example, Friedländer, Skraup, Semmlere-Wolff, and hetero-Diels-Alder, among others, are well known classical synthetic protocols used for the construction of the main 1,5-naphthyridine scaffold. These syntheses are classified according to the nature of the cycle fused to the 1,5-naphthyridine ring: carbocycles, nitrogen heterocycles, oxygen heterocycles, and sulphur heterocycles. In addition, taking into account the aforementioned versatility of these heterocycles, their reactivity is presented as well as their use as a ligand for metal complexes formation. Finally, those fused 1,5-naphthyridines that present biological activity and optical applications, among others, are indicated.
  • 1.2K
  • 31 Aug 2020
Topic Review
Chemical Treatment for Textile Waste
Trends in the textile industry show a continuous increase in the production and sale of textile materials, which in turn generates a huge amount of discarded clothing every year. This has a negative impact on the environment, on one side, by consuming resources—some of them non-renewables (to produce synthetic polymers)—and on the other side, by polluting the environment through the emission of GHGs (greenhouse gases), the generation of microplastics, and the release of toxic chemicals in the environment (dyes, chemical reagents, etc.). When natural polymers (e.g., cellulose, protein fibers) are used for the manufacturing of clothes, the negative impact is transferred to soil pollution (e.g., by using pesticides, fertilizers). In addition, for the manufacture of clothes from natural fibers, large amounts of water are consumed for irrigation. According to the European Environment Agency (EEA), the consumption of clothing is expected to increase by 63%, from 62 million tonnes in 2019 to 102 million tonnes in 2030.
  • 1.2K
  • 14 Oct 2022
Topic Review
Overview of viable Bacteria Immobilisation
Bioremediation is a key process for reclaiming polluted soil and water by the use of biological agents. A commonly used approach aims to neutralise or remove harmful pollutants from contaminated areas using live microorganisms. Generally, immobilised microorganisms rather than planktonic cells have been used in bioremediation methods. Activated carbon, inorganic minerals (clays, metal oxides, zeolites), and agricultural waste products are acceptable substrates for the immobilisation of bacteria, although there are limitations with biomass loading and the issue with leaching of bacteria during the process. Various synthetic and natural polymers with different functional groups have been used successfully for the efficient immobilisation of microorganisms and cells. Promise has been shown using macroporous materials including cryogels with entrapped bacteria or cells in applications for water treatment and biotechnology. A cryogel is a macroporous polymeric gel formed at sub-zero temperatures through a process known as cryogelation. Macroporous hydrogels have been used to make scaffolds or supports for immobilising bacterial, viral, and other cells. The production of composite materials with immobilised cells possessing suitable mechanical and chemical stability, porosity, elasticity, and biocompatibility suggests that these materials are potential candidates for a range of applications within applied microbiology, biotechnology, and research. 
  • 1.2K
  • 25 Apr 2021
Topic Review
1,3-Butadiene
1,3-Butadiene is the organic compound with the formula (CH2=CH)2. It is a colorless gas that is easily condensed to a liquid. It is important industrially as a monomer in the production of synthetic rubber. The molecule can be viewed as the union of two vinyl groups. It is the simplest conjugated diene. Although butadiene breaks down quickly in the atmosphere, it is nevertheless found in ambient air in urban and suburban areas as a consequence of its constant emission from motor vehicles. The name butadiene can also refer to the isomer, 1,2-butadiene, which is a cumulated diene with structure H2C=C=CH−CH3. This allene has no industrial significance.
  • 1.2K
  • 17 Oct 2022
Topic Review
Nitrogenase
Nitrogenase defines the familty of enzymes that catalyze the reduction of N2 (molecular nitrogen) to NH3 (ammonia). It is the only enzyme family which can realize this process of nitrogen fization. 
  • 1.2K
  • 19 Feb 2021
  • Page
  • of
  • 467
ScholarVision Creations