Topic Review
Carbon-Coatings Improve Performance of Li-Ion Battery
The development of lithium-ion batteries largely relies on the cathode and anode materials. In particular, the optimization of cathode materials plays an extremely important role in improving the performance of lithium-ion batteries, such as specific capacity or cycling stability. Carbon coating modifying the surface of cathode materials is regarded as an effective strategy that meets the demand of Lithium-ion battery cathodes.
  • 1.1K
  • 12 Jul 2022
Topic Review
Carbon-Fiber-Reinforced Polymers in Circular Economy
Thermosetting Carbon-Fiber-Reinforced Polymers (CFRPs) are engineered composites made out of carbon fibers (CFs) as the reinforcement and epoxy resin as the polymer matrix, which acts as load transfer elements across fibers.Thermosets are commonly charachterized by their high performance and flexibility according to different combination of polymeric-based materials (e.g. epoxies, polyurethane, rubber) and carbon fibers type. CFRPs owns durable and heat-resistant features that make proper them for cars or electrical appliances. CFRPs cannot be easily recycled or broken down after use, because the chemical bonds holding them cannot be changed or reversed as for thermoplastic material. New technological solutions are emerging with specific focus on the circular economy context.
  • 1.1K
  • 06 May 2022
Topic Review
Carbon-LiFePO4 Cathodes for Lithium-Ion Batteries
Li-ion batteries are in demand due to technological advancements in the electronics industry; thus, expanding the battery supply chain and improving its electrochemical performance is crucial. Carbon materials are used to increase the cyclic stability and specific capacity of cathode materials, which are essential to batteries. LiFePO4 (LFP) cathodes are generally safe and have a long cycle life. However, the common LFP cathode has a low inherent conductivity, and adding a carbon nanomaterial significantly influences how well it performs electrochemically.
  • 837
  • 28 Nov 2022
Topic Review
Carbon-Oxygen (C–O) Bond Formation
Various noble metal and nonprecious metal or metal oxide nanoparticles have been utilized to exploit the C–H activation process to promote the formation of a new C–O bond and access alcohols or carbonyls. 
  • 927
  • 03 Jan 2023
Topic Review
Carbon–Manganese Dioxide Composite in Supercapacitors
One of the global problems is environmental pollution by different biowaste. To solve the problem, biowaste must be recycled. Waste-free technology is also a way of saving exhaustible raw materials. Research on electrochemical energy sources is currently the most dynamically developing area of off-grid energy. Electrochemical capacitors can operate for a long time without changing performance, they have smaller dimensions, high mechanical strength, and a wide operating temperature range. These properties are effective energy-saving devices. Therefore, supercapacitors are widely used in various industries.
  • 645
  • 28 Oct 2022
Topic Review
Carbonation and Its Mechanisms in Reinforced Concrete Structures
Reinforced concrete (RC) has been commonly used as a construction material for decades due to its high compressive strength and moderate tensile strength. However, these two properties of RC are frequently hampered by degradation. The main degradation processes in RC structures are carbonation and the corrosion of rebars. The scientific community is divided regarding the process by which carbonation causes structural damage. Some researchers suggest that carbonation weakens a structure and makes it prone to rebar corrosion, while others suggest that carbonation does not damage structures enough to cause rebar corrosion.
  • 1.5K
  • 11 May 2022
Topic Review
Carbonation of Concrete
As one of the major causes of concrete deterioration, the carbonation of concrete has been widely investigated over recent decades. In recent years, the effect of mechanical load on carbonation has started to attract more attention. The load-induced variations in crack pattern and pore structure have a significant influence on CO2 transport which determines the carbonation rate. 
  • 1.3K
  • 07 Dec 2021
Topic Review
Carbonic Anhydrase in Cerebral Ischemia
Ischemic stroke is a leading cause of death and disability worldwide. The only pharmacological treatment available to date for cerebral ischemia is tissue plasminogen activator (t-PA) and the search for successful therapeutic strategies still remains a major challenge. The loss of cerebral blood flow leads to reduced oxygen supply and a subsequent switch to the glycolytic pathway, which leads to tissue acidification. Carbonic anhydrase (CA, EC 4.2.1.1) is the enzyme responsible for converting carbon dioxide into a protons and bicarbonate, thus contributing to pH regulation and metabolism, with many CA isoforms present in the brain. Recently, numerous studies have shed light on several classes of carbonic anhydrase inhibitor (CAI) as possible new pharmacological agents for the management of brain ischemia. 
  • 559
  • 21 May 2021
Topic Review
Carbonization Reactions in Biomass Pyrolysis Processes
Biochar is a carbon-rich solid produced during the thermochemical processes of various biomass feedstocks. Biomass pyrolysis is one of the most common processes to produce biochar.
  • 252
  • 29 Aug 2023
Topic Review
Cardiac Glycosides
Cardiac glycosides (CG’s) are naturally occurring biologically active small molecules, used to diagnose a diversity of heart diseases such as congestive heart failure and cardiac arrhythmia. The story of CG’s started over 100 years ago when Sir William Withering reported the use of foxglove plant for treating “dropsy” associated with congestive heart failure and the foxglove plant (Digitalis purpurea) was still in the use for the extraction of Digoxin, a cardiac glycoside used to treat congestive heart failures (Johnson., 2012). The core structure of CGs comprises a steroid nucleus attached to a five-membered lactone ring (cardenolide) or six-membered lactone rings (bufadienolides) along with sugar moieties. Major plant-derived CGs were obtained from plant families of Apocynaceae, Scrophulariaceae, and Asparagaceae (Thevitia neriifolia, Neerium oleander, Digitalis purpurea, Digitalis lanata, Urginea maritime, and Strophanthus kombe). Structurally, all these contain a core steroid nucleus connected with sugar moiety at C3 position and lactone moiety at C17 position (Figure 1.3). The pharmacological significance of all the CG’s lies in the core steroid confirmation that contains A/B and C/D cis- portions and the properties such as pharmacokinetics and pharmacodynamics lie between the confined sugars molecules (Pongrakhananon., 2013). Apart from the plant sources, CG’s were also isolated from several animal species such as bufadienolide was isolated from frogs, and also mammalian tissues contain a cardiac glycoside which is similar to endogenous digitalis (Melero et al., 2000). Quite a few studies have conveyed that the human body does contain a lot more CG’s in different parts. For example, the plasma membrane contains Ouabain and Proscillaridin A and human urine contains digoxin and marinobufagenin whereas human lenses consist of 19-norbufalin (Schoner and Scheiner-Bobis., 2007). In the year 1785, William Withering was the first person to use a digitalis compound from Digitalis purpurea to treat congestive heart failures. Currently, Digoxin is used for treating congestive heart failures. The mechanism of action of Digoxin is that it can inhibit the sodium-potassium pump (Na+/K+-ATPase). Living organisms maintain more percentage of K+ within the cell and less percentage of Na+. However, the scenario at the outside of the cell is quite opposite to the intracellular conditions where a high percentage of Na+ and less percentage of K+ will be maintained. Hence, there is a concentration incline that exists between the outside and inside cellular environments, which will be maintained by sodium-potassium pump. The Na+/K+-ATPase is recognized as a transmembrane protein whose functions are to maintain ionic balance in the heart tissue. Na+/K+-ATPase utilizes ATP as the whole energy source, to exchange two K+ ions inside the cell and pushes three Na+ ions outside to maintain intra cellular homeostasis. Also, Na+/K+-ATPase transports glucose and amino acids by keeping less concentration of Na+ within the cell and helps in the maintenance of electrochemical incline. The increment of the Na+ level inside the cell retort to CGs fortifies the ion exchange mechanism. This leads to the expansion of intracellular Ca2+ percentage which therefore promotes organelle instances such as myocardial contractibility, and generates optimistic inotropic effects in the heart cell with CGs (Kaplan., 2002).  
  • 1.7K
  • 12 Aug 2020
  • Page
  • of
  • 465
Video Production Service