Topic Review
Heterocyclic Crown Ethers
Crown ethers are heterocyclic compounds present as cyclic oligomers in their simple form. These are extremely versatile compounds exhibiting higher binding affinity towards metal ions, including s-block and transition metal ions. For example, 18-crown-6 has a cavity that fits the size of 4f transition metal ions and has reflected exceptional attraction for complexation with the lanthanide ions.
  • 1.4K
  • 27 Jan 2022
Topic Review
Red Mud resources for metal
Various scopes are suggested for the utilization of red mud to maintain a sustainable environment. The potential use of red mud covers the valuable metal recovery that could emphasize the use of red mud as a resource. Red mud could act as reduced slag in the metallurgical field for the extraction of minerals and metals for upscale application. Although many studies have revealed the potential utilization of red mud, most of them are only limited to a lab-scale basis. 
  • 1.4K
  • 09 Jul 2021
Topic Review
5-Hydroxymethylfurfural (HMF)
HMF, an indispensable member of the furan-based platform compound, known as the “sleeping giant”, is a bridge between renewable biomass and industrial bulk chemicals. In recent years, the catalytic transformation of biomass to HMF has been widely studied and envisaged to be hopeful in achieving sustainable biorefineries. The synthesis of HMF from biomass requires the acid hydrolysis of biomass to hexose, and then dehydration of hexose, to obtain HMF. In the second step of dehydration, starting from ketohexose (fructose) is more efficient than starting from aldohexose (glucose).
  • 1.4K
  • 11 Oct 2021
Topic Review
Blood-Brain Barrier: Functionalised Chitosan
The major impediment to the delivery of therapeutics to the brain is the presence of the blood-brain barrier (BBB). The BBB allows for the entrance of essential nutrients while excluding harmful substances, including most therapeutic agents; hence, brain disorders, especially tumors, are very difficult to treat. Chitosan is a well-researched polymer that offers advantageous biological and chemical properties, such as mucoadhesion and ease of functionalization. Chitosan-based nanocarriers (CsNCs) establish ionic interactions with the endothelial cells, facilitating the crossing of drugs through the BBB by adsorptive mediated transcytosis. This process is further enhanced by modifications of the structure of chitosan, owing to the presence of reactive amino and hydroxyl groups. Finally, by permanently binding ligands or molecules, such as antibodies or lipids, CsNCs have shown a boosted passage through the BBB, in both in vivo and in vitro studies which will be discussed in this review.
  • 1.4K
  • 21 Nov 2020
Topic Review
Copper Complexes as Topoisomerases Inhibitors
Organometallics, such as copper compounds, are cancer chemotherapeutics used alone or in combination with other drugs. A group of copper complexes exerts an effective inhibitory action on topoisomerases, which participate in the regulation of DNA topology. Copper complexes of topoisomerase inhibitors work by different molecular mechanisms that have repercussions on the cell cycle checkpoints and death effectors. 
  • 1.4K
  • 14 Oct 2020
Topic Review
Metal Oxide Nanoparticles
Metal oxide nanoparticles (NPs) have received a great deal of attention as potential theranostic agents. Despite extensive work on a wide variety of metal oxide NPs, few chemically active metal oxide NPs have received Food and Drug Administration (FDA) clearance. The clinical translation of metal oxide NP activity, which often looks so promising in preclinical studies, has not progressed as rapidly as one might expect. The lack of FDA approval for metal oxide NPs appears to be a consequence of the complex transformation of NP chemistry as any given NP passes through multiple extra- and intracellular environments and interacts with a variety of proteins and transport processes that may degrade or transform the chemical properties of the metal oxide NP. Moreover, the translational models frequently used to study these materials do not represent the final therapeutic environment well, and studies in reduced preparations have, all too frequently, predicted fundamentally different physico-chemical properties from the biological activity observed in intact organisms. Understanding the evolving pharmacology of metal oxide NPs as they interact with biological systems is critical to establish translational test systems that effectively predict future theranostic activity. 
  • 1.4K
  • 20 Apr 2021
Topic Review
Carbon Fixation
Carbon fixation or сarbon assimilation is the process by which inorganic carbon (particularly in the form of carbon dioxide) is converted to organic compounds by living organisms. The compounds are then used to store energy and as structure for other biomolecules. Carbon is primarily fixed through photosynthesis, but some organisms use a process called chemosynthesis in the absence of sunlight. Organisms that grow by fixing carbon are called autotrophs, which include photoautotrophs (which use sunlight), and lithoautotrophs (which use inorganic oxidation). Heterotrophs are not themselves capable of carbon fixation but are able to grow by consuming the carbon fixed by autotrophs or other heterotrophs. "Fixed carbon", "reduced carbon", and "organic carbon" may all be used interchangeably to refer to various organic compounds.
  • 1.4K
  • 06 Dec 2022
Topic Review
Nanofluids
Nanofluids are advanced category of fluids that are formed by dispersing nano scaled particles within non-dissolving conventional fluids. What makes such suspensions favourable to many thermal applications is that the developed thermal property of the fabricated fluid becomes somewhere within the range of that of the added solid particles and that of the conventional basefluid used. Nevertheless, the main challenges that faces the commercialization of such class of fluids are: 1- maintaining the physical stability of the dispersion, which otherwise can leads to a degradation in the effective thermophysical properties with time; and 2- the accompanied increase in effective viscosity of the mixture that generally cause the pressure losses in the system to increase, and hence the pumping power demands rises accordingly.    
  • 1.4K
  • 26 Aug 2020
Topic Review
Available Sampling Methods for Plastic Waste
Given the rapid development of plastics recycling in recent years, the need for guidelines for sampling and material characterization is steadily emerging. However, there still exists a considerable scarcity of methods that enable proper material data acquisition. It was found that neither the literature nor the standards provide a comprehensive practice that considers the distinctive characteristics of plastic waste and applies it to different situations along the value chain. Two variants of the proposed plan were evaluated based on the flake size distribution and the apparent density of four different pretreated polyolefin (PO) waste materials. Combining stratified random sampling with composite sampling yields a good sampling technique for rigid PO waste. Moreover, the analysis of a composite sample adequately conveys the true material properties of a sublot or lot.
  • 1.4K
  • 31 Aug 2022
Topic Review
Tannylated Calcium Carbonate Materials
Calcium carbonate (CaCO3)-based materials have received notable attention for biomedical applications owing to their safety and beneficial characteristics, such as pH sensitivity, carbon dioxide (CO2) gas generation, and antacid properties. Herein, to additionally incorporate antioxidant and anti-inflammatory functions, we prepared tannylated CaCO3 (TA-CaCO3) materials using a simple reaction between tannic acid (TA), calcium (Ca2+), and carbonate (CO32−) ions. TA-CaCO3 synthesized at a molar ratio of 1:75 (TA:calcium chloride (CaCl2)/sodium carbonate (Na2CO3)) showed 3–6 μm particles, comprising small nanoparticles in a size range of 17–41 nm. The TA-CaCO3 materials could efficiently neutralize the acid solution and scavenge free radicals. 
  • 1.3K
  • 12 May 2021
  • Page
  • of
  • 465
Video Production Service