Topic Review
Polymeric Nanocapsules
Polymer-based nanocapsules have been widely studied as a potential drug delivery system in recent years. Nanocapsules—as one of kind nanoparticle—provide a unique nanostructure, consisting of a liquid/solid core with a polymeric shell. This is of increasing interest in drug delivery applications. In this review, nanocapsules delivery systems studied in last decade are reviewed, along with nanocapsule formulation, characterizations of physical/chemical/biologic properties and applications. Furthermore, the challenges and opportunities of nanocapsules applications are also proposed.
  • 1.4K
  • 28 Oct 2020
Topic Review
Radical
In chemistry, a free radical is an atom, molecule, or ion that has at least one unpaired valence electron. With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spontaneously dimerize. Most organic radicals have short lifetimes. A notable example of a radical is the hydroxyl radical (HO·), a molecule that has one unpaired electron on the oxygen atom. Two other examples are triplet oxygen and triplet carbene (꞉CH2) which have two unpaired electrons. Radicals may be generated in a number of ways, but typical methods involve redox reactions. Ionizing radiation, heat, electrical discharges, and electrolysis are known to produce radicals. Radicals are intermediates in many chemical reactions, more so than is apparent from the balanced equations. Radicals are important in combustion, atmospheric chemistry, polymerization, plasma chemistry, biochemistry, and many other chemical processes. A majority of natural products are generated by radical-generating enzymes. In living organisms, the radicals superoxide and nitric oxide and their reaction products regulate many processes, such as control of vascular tone and thus blood pressure. They also play a key role in the intermediary metabolism of various biological compounds. Such radicals can even be messengers in a process dubbed redox signaling. A radical may be trapped within a solvent cage or be otherwise bound.
  • 1.4K
  • 15 Nov 2022
Topic Review
Bioactive Coatings
       In this entry, we compiled a variety of creative approaches to generate antimicrobial bioactive coatings. The benefits are very desirable: to create surfaces that either repel the attachment of viable microorganisms or kill microorganisms on contact without inducing inflammation or cytotoxicity to host tissues.        These coatings may consist of nanoparticles of pure elements (e.g. silver, copper, and zinc), sanitizing agents and disinfectants (e.g., quaternary ammonium ions and chlorhexidine), antibiotics (e.g., cefalotin, vancomycin, and gentamacin), or antimicrobial peptides (AMP).        Many bioactive coatings may involve unique delivery systems to direct their antimicrobial capacity against pathogens, but not commensals.  Coatings may also contain multiple antimicrobial substances to widen antimicrobial activity across multiple microbial species.
  • 1.4K
  • 26 Aug 2020
Topic Review
Drug Delivery for Cardiovascular Diseases
Cardiovascular diseases (CVDs) are the leading cause of death globally, taking an estimated 17.9 million lives each year, representing one third of global mortality. As existing therapies still have limited success, due to the inability to control the biodistribution of the currently approved drugs, the quality of life of these patients is modest. The advent of nanomedicine has brought new insights in innovative treatment strategies.
  • 1.4K
  • 08 Dec 2020
Topic Review
Living Anionic Polymerization
Living anionic polymerization is a living polymerization technique involving an anionic propagating species. Living anionic polymerization was demonstrated by Szwarc and co workers in 1956. Their initial work was based on the polymerization of styrene and dienes. One of the remarkable features of living anionic polymerization is that the mechanism involves no formal termination step. In the absence of impurities, the carbanion would still be active and capable of adding another monomer. The chains will remain active indefinitely unless there is inadvertent or deliberate termination or chain transfer. This gave rise to two important consequences: The following experimental criteria have been proposed as a tool for identifying a system as living polymerization system. However, in practice, even in the absence of terminating agents, the concentration of the living anions will reduce with time due to a decay mechanism termed as spontaneous termination.
  • 1.4K
  • 31 Oct 2022
Topic Review
Clear Aligners - 3D Printing
The recent introduction of three-dimensional (3D) printing is revolutionizing dentistry and is even being applied to orthodontic treatment of malocclusion. Clear, personalized, removable aligners are a suitable alternative to conventional orthodontic appliances, offering a more comfortable and efficient solution for patients. Including improved oral hygiene and aesthetics during treatment. Contemporarily, clear aligners are produced by a thermoforming process using various types of thermoplastic materials. The thermoforming procedure alters the properties of the material, and the intraoral environment further modifies the properties of a clear aligner, affecting overall performance of the material. Direct 3D printing offers the creation of highly precise clear aligners with soft edges, digitally designed and identically reproduced for an entire set of treatment aligners; offering a better fit, higher efficacy, and reproducibility. Despite the known benefits of 3D printing and the popularity of its dental applications, very limited technical and clinical data are available in the literature about directly printed clear aligners. 
  • 1.4K
  • 14 Sep 2021
Topic Review
Surface Modification of Bacterial Cellulose
The surface of bacterial cellulose was successively modified by copper and zinc oxide nanoparticles using direct current (DC) magnetron sputtering and radio frequency (RF) reactive sputter coating techniques. The target materials, copper and zinc, were 99.99% pure and used in the presence of argon (Ar) gas, while zinc nanoparticles were sputtered in the presence of oxygen gas to make zinc oxide nanoparticles. The as-prepared bacterial cellulose/copper/zinc oxide nanocomposite has good ultraviolet resistance, anti-static and antibacterial characteristics. The surface morphology and chemical compositionof the nanocomposite were examined by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopic (EDS) techniques. The prepared bacterial cellulose/copper/zinc oxide nanocomposite illustrates excellent ultraviolet resistance (T.UVA%; 0.16 ± 0.02, T.UVB%; 0.07 ± 0.01, ultraviolet protection factor (UPF); 1850.33 ± 2.12), antistatic behavior (S.H.P; 51.50 ± 4.10, I.E. V; 349.33 ± 6.02) and antibacterial behavior (Escherichia coli; 98.45%, Staphylococcus aureus; 98.11%). Our nanocomposite prepared by sputter coating method could be a promising and effective candidate for ultraviolet resistance, antistatic and antibacterial in term of functional, technical, medical and in many daily life applications.  
  • 1.4K
  • 01 Nov 2020
Topic Review
Red Mud resources for metal
Various scopes are suggested for the utilization of red mud to maintain a sustainable environment. The potential use of red mud covers the valuable metal recovery that could emphasize the use of red mud as a resource. Red mud could act as reduced slag in the metallurgical field for the extraction of minerals and metals for upscale application. Although many studies have revealed the potential utilization of red mud, most of them are only limited to a lab-scale basis. 
  • 1.4K
  • 09 Jul 2021
Topic Review
Methyl Iodide
Methyl iodide, also called iodomethane, and commonly abbreviated "MeI", is the chemical compound with the formula CH3I. It is a dense, colorless, volatile liquid. In terms of chemical structure, it is related to methane by replacement of one hydrogen atom by an atom of iodine. It is naturally emitted by rice plantations in small amounts. It is also produced in vast quantities estimated to be greater than 214,000 tons annually by algae and kelp in the world's temperate oceans, and in lesser amounts on land by terrestrial fungi and bacteria. It is used in organic synthesis as a source of methyl groups.
  • 1.4K
  • 01 Nov 2022
Topic Review
Hydrogels Classification
Hydrogels are attractive biomaterials with favorable characteristics due to their water uptake capacity. However, hydrogel properties are determined by the cross-linking degree and nature, the tacticity, and the crystallinity of the polymer. 
  • 1.4K
  • 08 Dec 2021
  • Page
  • of
  • 465
Video Production Service