Topic Review
Carbon Capture Using Porous Silica Materials
As the primary greenhouse gas, CO2 emission has noticeably increased over the past decades resulting in global warming and climate change. Surprisingly, anthropogenic activities have increased atmospheric CO2 by 50% in less than 200 years, causing more frequent and severe rainfall, snowstorms, flash floods, droughts, heat waves, and rising sea levels in recent times. Hence, reducing the excess CO2 in the atmosphere is imperative to keep the global average temperature rise below 2 °C.
  • 258
  • 19 Jul 2023
Topic Review
Aprotinin for Influenza Treatment
Aprotinin (APR) was discovered in 1930. APR is an effective pan-protease inhibitor, a typical “magic shotgun”. Until 2007, APR was widely used as an antithrombotic and anti-inflammatory drug in cardiac and noncardiac surgeries for reduction of bleeding and thus limiting the need for blood transfusion. The ability of APR to inhibit proteolytic activation of some viruses leads to its use as an antiviral drug for the prevention and treatment of acute respiratory virus infections.
  • 259
  • 19 Jul 2023
Topic Review
Metal–Organic Frameworks-Derived Metal Nanomaterials
Metal–organic frameworks (MOFs) are used in catalysis due to their high specific surface area and porous structure. In situ electrochemical reduction is a mild and effective reduction method. For some unstable MOFs, the pretreatment process of electrochemical reduction is often accompanied by the reduction of metal ions and spontaneous aggregation to form metal nanomaterials, while the organic ligands or linkers are dissolved in the electrolyte. Compared to MOFs connected through relatively weak coordination bonds, metal nanoparticles connected by metallic bonds are significantly more conductive and stable, which effectively improves the catalyst activity and stability in electrocatalytic CO2 reduction reaction (ECO2RR). At the same time, compared with reducing agents, electrochemical reduction often retains some M-O species or organic ligands on the surface, which has an important impact on catalytic activity and stability. The structure of the MOF precursor also has an important impact on the morphology of the derived catalyst and the corresponding ECO2RR performance.
  • 172
  • 19 Jul 2023
Topic Review
Ionic Liquids Used in Dissolution of Cellulose
Cellulose is the most abundant natural polymer, which has attracted great attention due to the demand for eco-friendly and sustainable materials. The sustainability of cellulose products also depends on the selection of the dissolution solvent.
  • 354
  • 18 Jul 2023
Topic Review
Antibiotics Extraction from Shrimps Prior to Chromatographic Analysis
Antibiotics are used in aquaculture in order to control the infection outbreaks. They are natural, semisynthetic or synthetic compounds and their antibacterial effect resides on their ability to eliminate the bacteria or hinder their growth. The widespread use of antibiotics in veterinary practice and aquaculture has led to the increase of antimicrobial resistance in food-borne pathogens that may be transferred to humans. 
  • 397
  • 18 Jul 2023
Topic Review
Microextraction-Based Methods for Determination of Sulfonamides in Milk
Sulfonamides (SAs) represent a significant category of pharmaceutical compounds due to their effective antimicrobial characteristics. SAs were the first antibiotics to be used in clinical medicine to treat a majority of diseases, since the 1900s. In the dairy farming industry, sulfa drugs are administered to prevent infection, in several countries. This increases the possibility that residual drugs could pass through milk consumption even at low levels. These traces of SAs will be detected and quantified in milk. 
  • 301
  • 18 Jul 2023
Topic Review
Micro-Combinatorial Technique in Materials Science
The novel, single-sample concept combinatorial method, the so-called micro-combinatory technique, has been shown to be suitable for the high-throughput and complex characterization of multicomponent thin films over an entire composition range. In addition to the 3 mm diameter TEM grid used for microstructural analysis, by scaling up the substrate size to 10 × 25 mm, this novel approach has allowed for a comprehensive study of the properties of the materials as a function of their composition, which has been determined via transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectrometry (RBS), X-ray diffraction analysis (XRD), atomic force microscopy (AFM), spectroscopic ellipsometry, and nanoindentation studies.
  • 262
  • 18 Jul 2023
Topic Review
Cellulose Nanocrystal (CNC) Gels: A Review
Cellulose nanocrystals (CNCs) are emerging nanomaterials derived from the most abundant renewable polymer on earth, being widely distributed in plants, bacteria, algae, etc., which can be extracted from these cellulosic sources through mechanical disintegration, controlled sulfuric acid hydrolysis and mixed acid hydrolysis.
  • 334
  • 18 Jul 2023
Topic Review
Applications of Metal-Organic Frameworks in Food Sample Preparation
Food samples such as milk, beverages, meat and chicken products, fish, etc. are complex and demanding matrices. Various novel materials such as molecular imprinted polymers (MIPs), carbon-based nanomaterials carbon nanotubes, graphene oxide and metal-organic frameworks (MOFs) have been recently introduced in sample preparation to improve clean up as well as to achieve better recoveries, all complying with green analytical chemistry demands. Metal-organic frameworks are hybrid organic inorganic materials, which have been used for gas storage, separation, catalysis and drug delivery. 
  • 280
  • 17 Jul 2023
Topic Review
Graphene Oxide for Organic Compounds Magnetic Solid-Phase Extraction
Graphene oxide (GO) is a chemical compound with a form similar to graphene that consists of one-atom-thick two-dimensional layers of sp2-bonded carbon. Graphene oxide exhibits high hydrophilicity and dispersibility. Thus, it is difficult to be separated from aqueous solutions. Therefore, functionalization with magnetic nanoparticles is performed in order to prepare a magnetic GO nanocomposite that combines the sufficient adsorption capacity of graphene oxide and the convenience of magnetic separation. Moreover, the magnetic material can be further functionalized with different groups to prevent aggregation and extends its potential application. A plethora of magnetic GO hybrid materials have been synthesized and successfully employed for the magnetic solid-phase extraction of organic compounds from environmental, agricultural, biological, and food samples. The developed GO nanocomposites exhibit satisfactory stability in aqueous solutions, as well as sufficient surface area.
  • 186
  • 17 Jul 2023
  • Page
  • of
  • 465
Video Production Service