Topic Review
PDE4 Inhibitors
Cyclic nucleotide phosphodiesterases 4 (PDE4) are a family of enzymes which specifically promote the hydrolysis and degradation of cAMP. The inhibition of PDE4 enzymes has been widely investigated as a possible alternative strategy for the treatment of a variety of respiratory diseases, including chronic obstructive pulmonary disease and asthma, as well as psoriasis and other autoimmune disorders.
  • 415
  • 21 Jul 2023
Topic Review
Copper-Based Materials for Sustainable Environmental Applications
Copper-based nanomaterials have gained significant attention for their practical environmental applications due to their cost-effectiveness, thermal stability, selectivity, high activity, and wide availability. 
  • 380
  • 21 Jul 2023
Topic Review
Indole-Based Macrocyclization by Metal-Catalyzed Approaches
Due to its immense importance, the progress of novel approaches for the synthesis of indole-based scaffolds has increased steadily. The majority of the macrocycles synthesis proceeds through the macrolactamization and macrolactonization, as well as the C–C bond macrocyclization process described by metal-catalyzed ring-closing metathesis (RCM) and coupling reactions.
  • 512
  • 21 Jul 2023
Topic Review
Chiral Porous Organic Frameworks
Organocatalysis, the use of chiral organic molecules as catalysts, has emerged as a highly efficient alternative to traditional asymmetric catalysis methods. Chiral porous organic frameworks have emerged as candidates for heterogeneous asymmetric organocatalysis.
  • 255
  • 20 Jul 2023
Topic Review
Applications of Nanomaterials in Electrochemical Devices
Nanomaterials have gained significant attention as a remarkable class of materials due to their unique properties and the fact that they encompass a wide range of samples with at least one dimension ranging from 1 to 100 nm. The deliberate design of nanoparticles enables the achievement of extremely large surface areas. In the field of cost-effective electrochemical devices for energy storage and conversion applications, nanomaterials have emerged as a key area of research. 
  • 298
  • 20 Jul 2023
Topic Review
Print-Light-Synthesis of Electrodes
Print-Light-Synthesis combines ink-based digital printing of thin liquid metal precursor films with high intensity light irradiation for the synthesis of metal nanoparticles and metal films. The method is generally applied to produce two-dimensional patterns of metal nanoparticles by printing a thin liquid film containing one or more metal precursors onto a target substrate and immediately reducing the metal precursors to metal nanoparticles by light exposure of the as-deposited thin liquid film. The process must be adjusted in a way that (i) the precursor reduction is at least as fast as printing and (ii) the light intensity is sufficient for highly efficient photo-induced processes. Otherwise, incomplete metal precursor reduction will occur. The metal precursor inks do not contain any stabilizing agents that are generally added in alternative wet chemical methods for nanoparticle synthesis. Print-Light-Synthesis is designed in such a way that pure nanomaterials remain on the substrate, while all other ink components, such as the solvents and other dissolved species, generate gases or evaporate at moderate temperatures. The use of mask-less digital printing techniques provides a large flexibility in terms of pattern design, pattern modification, and process optimization. Inkjet printing provides a high control of the desired metal loading on the substrate, simply by adjusting the ink composition and printing parameters, such as number of droplets per substrate area. Films of separate nanoparticles, inter-connected nanoparticles and complex nanostructures can be prepared. Print-Light-Synthesis can be used to reduce or oxidise metal precursors, depending on the target oxidation state of the metal.
  • 271
  • 20 Jul 2023
Topic Review
Luminescent Sensing of Nitroaromatics by Crystalline Lanthanide–Organic Complexes
Water environment pollution is becoming an increasingly serious issue due to industrial pollutants with the rapid development of modern industry. Among many pollutants, the toxic and explosive nitroaromatics are used extensively in the chemical industry, resulting in environmental pollution of soil and groundwater. Therefore, the detection of nitroaromatics is of great significance to environmental monitoring, citizen life and homeland security. Lanthanide–organic complexes with controllable structural features and excellent optical performance have been rationally designed and successfully prepared and used as lanthanide-based sensors for the detection of nitroaromatics.
  • 254
  • 20 Jul 2023
Topic Review
Applications of QDs in ECL Biosensing
Electrochemiluminescence (ECL) is the chemiluminescence triggered by electrochemical reactions. Due to the unique excitation mode and inherent low background, ECL has been a powerful analytical technique to be widely used in biosensing and imaging. As an emerging ECL luminophore, semiconductor quantum dots (QDs) have apparent advantages over traditional molecular luminophores in terms of luminescence efficiency and signal modulation ability. Therefore, the development of an efficient ECL system with QDs as luminophores is of great significance to improve the sensitivity and detection flux of ECL biosensors. 
  • 200
  • 20 Jul 2023
Topic Review
Gold Nanoparticles: The Guest
Gold nanoparticles (AuNP) have received a growing attention due to their fascinating physiochemical properties and promising range of biomedical applications including sensing, diagnosis and cancer photothermal ablation. AuNP enjoy brilliant optical properties and ability to convert light into local heat and function as a “nanoheaters” to fight cancer. However, AuNP are poor drug delivery systems as they do not have reservoirs or matrices to achieve an acceptable drug loading efficiency. On the other end, liposome-based nanocarriers do not exhibit such optical properties but are excellent platform for drug loading and they have been proven clinically with a true presence in the market since the FDA approved Doxil® in 1995. 
  • 178
  • 20 Jul 2023
Topic Review
Synthesis of Mesoporous Silica Nanoparticles
Mesoporous silica nanoparticles (MSNs) have been advocated as nanocarriers for the treatment of various diseases because of their physicochemical properties and biocompatibility. The use of MSNs combined with therapeutic agents can provide better encapsulation and effective delivery. MSNs as nanocarriers might also be a promising tool to lower the therapeutic dosage levels and thereby to reduce undesired side effects. Furthermore, when combined with imaging compounds for diagnosis, they can be employed as theragnostic agents thus allowing both imaging and therapy using the same nanoparticle.
  • 1.1K
  • 19 Jul 2023
  • Page
  • of
  • 465
Video Production Service