Topic Review
Biomaterial-Mediated Gene Therapy in Cartilage Repair
Articular cartilage defects caused by various reasons are relatively common in clinical practice, but the lack of efficient therapeutic methods remains a substantial challenge due to limitations in the chondrocytes’ repair abilities. In the search for scientific cartilage repair methods, gene therapy appears to be more effective and promising, especially with acellular biomaterial-assisted procedures. Biomaterial-mediated gene therapy has mainly been divided into non-viral vector and viral vector strategies, where the controlled delivery of gene vectors is contained using biocompatible materials. Genetic therapy, on the other hand, aims to transfer exogenous genes into target cells in order to induce endogenous gene expression to complete treatment. It has been extensively used in cartilage repair. Genetic editing is used to promote stable expressions of various growth factors for osteochondral regeneration. Meanwhile, biomaterial mediation could further localize the effect of genetic therapy by providing a scaffold to limit the genetically modified cells and vectors to within the targeted region; this increases the precision of the treatment, and makes it an ideal approach for treating osteochondral injuries.
  • 313
  • 14 Oct 2022
Topic Review
Biomaterials and Their Potentialities as Additives in Bitumen
A lot of research is ongoing to improve bitumen’s properties due to its use as a binder in road paving processes. Over the years, the most common method to improve bitumen’s properties has been with the use of additives. The major drawback in the use of these additives is the fact that they are substances of strong chemical nature which are either too acidic, too basic or emit toxic fumes and volatile organic compounds into the environment. In the long run, these chemicals are also toxic to the road pavement personnel that carry out the day to day industrial and paving operations. This led researchers to the initiative of synthesizing and applying biomaterials to be used as additives for bitumen. In this light, several studies have investigated the use of substances such as bio-oils, natural waxes, gum, polysaccharides and natural rubber. 
  • 611
  • 13 Jan 2023
Topic Review
Biomaterials as Haemostatic Agents in Cardiovascular Surgery
Intraoperative haemostasis is of paramount importance in the practice of cardiovascular surgery. Topical haemostatic methods have advanced significantly and today we deal with various haemostatic agents with different properties and different mechanisms of action. The particularity of coagulation mechanisms after extracorporeal circulation, has encouraged the introduction of new types of topic agents to achieve haemostasis, where conventional methods prove their limits. These products have an important role in cardiac, as well as in vascular, surgery, mainly in major vascular procedures, like aortic dissections and aortic aneurysms.
  • 370
  • 31 Mar 2022
Topic Review
Biomaterials for Drugs Nose–Brain Transport
Recently, the intranasal route has emerged as a promising administration site for central nervous system therapeutics since it provides a direct connection to the central nervous system, avoiding the passage through the blood–brain barrier, consequently increasing drug cerebral bioavailability.
  • 582
  • 13 Apr 2021
Topic Review
Biomaterials for Ophthalmic Applications
Ophthalmology is the branch of medicine that deals with diseases of the eye, the organ responsible for vision, and its attachments. Biomaterials can be made with different types of materials and can replace or improve a function or an organ, specifically the eye in the case of ophthalmic biomaterials. Biomaterials are substances that interact with biological systems for a medical purpose, either as a therapeutic (treat, augment, repair, or replace a tissue function of the body) or a diagnostic agent, and have continued to improve over the years, leading to the creation of new biomaterials.
  • 1.9K
  • 22 Jun 2022
Topic Review
Biomaterials in 3D Cell Culture
The process of evaluating the efficacy and toxicity of drugs is important in the production of new drugs to treat diseases. Testing in humans is the most accurate method, but there are technical and ethical limitations. To overcome these limitations, various models have been developed in which responses to various external stimuli can be observed to help guide future trials. In particular, three-dimensional (3D) cell culture has a great advantage in simulating the physical and biological functions of tissues in the human body. 
  • 643
  • 16 Apr 2021
Topic Review
Biomedical Alloys and Physical Surface Modifications
Biomedical alloys are essential parts of modern biomedical applications. However, they cannot satisfy the increasing requirements for large-scale production owing to the degradation of metals. Physical surface modification could be an effective way to enhance their biofunctionality.
  • 466
  • 11 Jan 2022
Topic Review
Biomedical Application of Carbon Dots
Carbon dots (CDs), which are a new category of carbon nanoparticles that consist of quasi-spherical, discrete fluorescent carbon nanomaterials with a diameter of less than 10 nm, have multiple advantages over semiconductor quantum dots (QDs), including high water solubility, low cost, excellent biocompatibility, chemically inertness, highly tunable photoluminescence and electrochemical luminescence. Because of their unique properties, carbon quantum dots (CQDs) have acquired significance in nano-chemistry, which has resulted in the discovery of CDD applications, especially in biomedical applications.            
  • 648
  • 01 Mar 2023
Topic Review
Biomedical Application of Silk-Based Cryogels
There is a need to develop the next generation of medical products that require biomaterials with improved properties. The versatility of various gels has pushed them to the forefront of biomaterials research. Cryogels, a type of gel scaffold made by controlled crosslinking under subzero or freezing temperatures, have great potential to address many current challenges. Unlike their hydrogel counterparts, which are also able to hold large amounts of biologically relevant fluids such as water, cryogels are often characterized by highly dense and crosslinked polymer walls, macroporous structures, and often improved properties. 
  • 473
  • 04 Jan 2023
Topic Review
Biomedical Applications of Antiviral Nanohybrids
The COVID-19 pandemic has driven a global research to uncover novel, effective therapeutical and diagnosis approaches. In addition, control of spread of infection has been targeted through development of preventive tools and measures. In this regard, nanomaterials, particularly, those combining two or even several constituting materials possessing dissimilar physicochemical (or even biological) properties, i.e., nanohybrid materials play a significant role. Nanoparticulate nanohybrids have gained a widespread reputation for prevention of viral crises, thanks to their promising antimicrobial properties as well as their potential to act as a carrier for vaccines. On the other hand, they can perform well as a photo-driven killer for viruses when they release reactive oxygen species (ROS) or photothermally damage the virus membrane. The nanofibers can also play a crucial protective role when integrated into face masks and personal protective equipment, particularly as hybridized with antiviral nanoparticles.
  • 584
  • 16 Sep 2021
  • Page
  • of
  • 465
Video Production Service