Topic Review
Sweet Boron
Boron neutron capture therapy (BNCT) is a binary type of radiotherapy for the treatment of cancer. Due to recent developments of neutron accelerators and their installation in some hospitals, BNCT is on the rise worldwide and is expected to have a significant impact on patient treatments. Therefore, there is an increasing need for improved boron delivery agents. 
  • 605
  • 03 Mar 2022
Topic Review
Chitosan and Its Derivatives in Promoting Drug Permeation
Chitosan is the product of N-deacetylation of chitin. Due to the simultaneous presence of amino, acetamido, and hydroxyl groups in the molecule, chitosan is quite active in nature and can be modified, activated, and coupled, showing rich functionality and modifiability in biological applications. As the only polycationic polymer of natural origin, chitosan is capable of interacting with negatively charged cell membranes to assist the loading of drugs across the cell membrane.
  • 605
  • 21 Apr 2022
Topic Review
Pharmaceutical and Microplastic Pollution in Water
Pharmaceuticals (PhACs) and microplastics (MPs) are emerging pollutants that pose serious environmental risks. PhACs have been found in low concentrations in a variety of environmental samples, including sewage treatment plant effluents, surface water, seawater, and groundwater, in a number of countries.
  • 605
  • 27 Oct 2022
Topic Review
Bacterial Cellulose-Based Polymer Nanocomposites
Bacterial cellulose (BC) is one of the most popular environmentally friendly materials with unique structural and physicochemical properties for obtaining various functional materials for a wide range of applications. In this regard, the literature reporting on bacterial nanocellulose has increased exponentially. Extensive investigations aim at promoting the manufacturing of BC-based nanocomposites with other components such as nanoparticles, polymers, and biomolecules, and that will enable to develop of a wide range of materials with advanced and novel functionalities.
  • 605
  • 18 Nov 2022
Topic Review
Triboelectric Nanogenerators in Sustainable Chemical Sensors
The rapid development of sensing technology has created an urgent need for chemical sensor systems that can be rationally integrated into efficient, sustainable, and wearable electronic systems. In this case, the triboelectric nanogenerator (TENG) is expected to be a major impetus to such innovation because it can not only power the sensor by scavenging mechanical energies and transforming them into electricity but also act as the chemical sensor itself due to its intrinsic sensitivity towards the chemical reaction that occurs at the triboelectric interface.
  • 605
  • 24 Nov 2022
Topic Review
Nucleoside Analogs and Coronaviruses
Coronaviruses (CoVs) are positive-sense RNA enveloped viruses, members of the family Coronaviridae, that cause infections in a broad range of mammals including humans. Several CoV species lead to mild upper respiratory infections typically associated with common colds. However, three human CoV (HCoV) species: Severe Acute Respiratory Syndrome (SARS)-CoV-1, Middle East Respiratory Syndrome (MERS)-CoV, and SARS-CoV-2, are responsible for severe respiratory diseases at the origin of two recent epidemics (SARS and MERS), and of the current COronaVIrus Disease 19 (COVID-19), respectively.
  • 604
  • 24 May 2021
Topic Review
Diatom-Derived Silica for Biomedical Applications
Diatoms are unicellular eukaryotic microalgae widely distributed in aquatic environments, possessing a porous silica cell wall known as frustule. Diatom frustules are considered as a sustainable source for several industrial applications because of their high biocompatibility and the easiness of surface functionalisation, which make frustules suitable for regenerative medicine and as drug carriers. Frustules are made of hydrated silica, and can be extracted and purified both from living and fossil diatoms using acid treatments or high temperatures. Biosilica frustules have proved to be suitable for biomedical applications, but, unfortunately, they are not officially recognised as safe by governmental food and medical agencies yet.
  • 604
  • 01 Jun 2021
Topic Review
Fluorogenic Aptasensors with Small Molecules
Aptamers are single-stranded DNA or RNA molecules that can be identified through an iterative in vitro selection–amplification process. Among them, fluorogenic aptamers in response to small molecules have been of great interest in biosensing and bioimaging due to their rapid fluorescence turn-on signals with high target specificity and low background noise. 
  • 604
  • 25 Jun 2021
Topic Review
Nonprecious Metal Homogeneously Catalyzed Formic Acid Dehydrogenation
Formic acid (FA) possesses a high volumetric concentration of H2 (53 g L−1). Moreover, it can be easily prepared, stored, and transported. Therefore, FA stands out as a potential liquid organic hydrogen carrier (LOHC), which allows storage and transportation of hydrogen in a safe way. The dehydrogenation to produce H2 and CO2 competes with its dehydration to give CO and H2O. For this reason, research on selective catalytic FA dehydrogenation has gained attention in recent years. Several examples of highly active homogenous catalysts based on precious metals effective for the selective dehydrogenation of FA have been reported. Among them are the binuclear iridium-bipyridine catalysts described by Fujita and Himeda et al. (TOF = 228,000 h−1) and the cationic species [IrClCp*(2,2′-bi-2-imidazoline)]Cl (TOF = 487,500 h−1). However, examples of catalytic systems effective for the solventless dehydrogenation of FA, which is of great interest since it allows to reduce the reaction volume and avoids the use of organic solvents that could damage the fuel cell, are scarce. 
  • 604
  • 30 Nov 2021
Topic Review
Graphene and 2D Materials
Several chemical vapor deposition (CVD) methods have been extensively used in the semiconductor industries for bulk crystal growth, thin film deposition, and nanomaterials synthesis. The MW-SWP CVD system consisting of a waveguide, slot antenna, and dielectric windows is significant for generating high-density plasma with low electron temperature, enabling low-temperature growth of materials without damaging the surface of base substrates. The synthesis of graphene and hexagonal boron nitride (hBN) films has been achieved on metals, semiconductors, insulators, and dielectric substrates for application in photovoltaics, sensors, batteries, supercapacitors, fuel cells, and various other electronic devices.
  • 604
  • 13 Sep 2022
  • Page
  • of
  • 466
ScholarVision Creations