Topic Review
Clinoptilolite
Zeolites are crystalline, hydrated aluminosilicates with an open-framework structure. Unique structural features make them very useful ion-changers, adsorbents and catalysts. The catalytic use of zeolites has expanded from traditional use in the petrochemical industry and refineries to use in the catalytic degradation of various environmental pollutants and the synthesis of fine chemicals. Progress on the use of zeolites has been achieved in biomass conversion to fuels and valuable industrial bio-based chemicals. 
  • 645
  • 10 Jul 2023
Topic Review
Modification and Application of Bamboo-Based Materials
In light of continual societal advancement and escalating energy consumption, the pursuit of green, low-carbon, and environmentally friendly technologies has become pivotal. Bamboo, renowned for its diverse advantages encompassing swift growth, ecological compatibility, robust regenerative properties, commendable mechanical characteristics, heightened hardness, and abundant availability, has discovered applications across various domains, including furniture and construction. Nevertheless, natural bamboo materials are plagued by inherent limitations, prominently featuring suboptimal hydrophobicity and vulnerability to fracture, thereby constraining their broad-scale application. Thus, the paramount concern is to enhance the performance of bamboo materials through modification.
  • 645
  • 16 Nov 2023
Topic Review
Genus Cordyline
Cordyline species have a long history in traditional medicine as a basis of treatment for various ailments such as a bloody cough, dysentery, and a high fever. There are about 26 accepted species names in this genus distributed worldwide, including C. fruticosa, C. autralis, C. stricta, C. cannifolia, and C. dracaenosides. 
  • 645
  • 19 Dec 2023
Topic Review
Ru(II)-Dppz Derivatives and DNA
Transition metal complexes with dppz-type ligands (dppz = dipyrido[3,2-a:2′,3′-c]phenazine) are extensively studied and attract a considerable amount of attention, becoming, from the very beginning and increasingly over time, a powerful tool for investigating the structure of the DNA helix. In particular, [Ru(bpy)2(dppz)]2+ and [Ru(phen)2(dppz)]2+ and their derivatives were extensively investigated as DNA light-switches. 
  • 644
  • 13 Apr 2021
Topic Review
MALDI MS-Based Investigations Targeting SARS-CoV-2
The urgent need to fight the COVID-19 pandemic has impressively stimulated the efforts of the international scientific community, providing an extraordinary wealth of studies. Improving the current laboratory testing methods and developing new rapid and reliable diagnostic approaches might be useful in managing contact tracing in the fight against both the original SARS-CoV-2 strain and the new, potentially fast-spreading CoV-2 variants. Mass Spectrometry (MS)-based testing methods and more specifically MALDI-MS have demonstrated without any doubt the great potential to overcome many unresolved analytical challenges arising from currently used laboratory testing assays, becoming an effective proteomic tool in several applications, including pathogen identification. With the aim of highlighting the challenges and opportunities that derive from MALDI-based approaches for the detection of SARS-CoV-2 and its variants, we extensively examined the most promising proofs of concept for MALDI studies related to the COVID-19 outbreak.
  • 644
  • 13 Dec 2021
Topic Review
MIECs for Food Safety and Drug Detection
Due to their advantages of good flexibility, low cost, simple operations, and small equipment size, electrochemical sensors have been commonly employed in food safety. However, when they are applied to detect various food or drug samples, their stability and specificity can be greatly influenced by the complex matrix. By combining electrochemical sensors with molecular imprinting techniques (MIT), they will be endowed with new functions of specific recognition and separation, which make them powerful tools in analytical fields. MIT-based electrochemical sensors (MIECs) require preparing or modifying molecularly imprinted polymers (MIPs) on the electrode surface. MIECs behave promisingly in applications in food and drug safety detection.
  • 644
  • 06 Jun 2022
Topic Review
Nanostructures for Breast Cancer Diagnosis
Breast cancer (BC) is a highly metastatic multifactorial disease with various histological and molecular subtypes. Due to recent advancements, the mortality rate in BC has improved over the past five decades. Detection and treatment of many cancers are now possible due to the application of nanomedicine in clinical practice. Nanomedicine products such as Doxil® and Abraxane® have already been extensively used for BC adjuvant therapy with favorable clinical outcomes. 
  • 644
  • 20 Jul 2022
Topic Review
Bio-Lubricants
An extremely efficient lubrication system is achieved in synovial joints by means of bio-lubricants and sophisticated nanostructured surfaces that work together.
  • 644
  • 25 Jul 2022
Topic Review
Unc-51-like Autophagy-Activating Kinase Inhibitors as Anticancer Agents
Autophagy is a cellular process that removes damaged components of cells and recycles them as biochemical building blocks. Autophagy can also be induced to protect cells in response to intra- and extracellular stresses, including damage to cellular components, nutrient deprivation, hypoxia, and pathogenic invasion. Dysregulation of autophagy has been attributed to various diseases. In particular, autophagy protects cancer cells by supporting tumor cell survival and the development of drug resistance. The ULK complex is an early-stage regulator of autophagy and attracted particular attention as a drug target. Among ULK isoforms, ULK1, ULK2, ULK3, ULK4, and serine/threonine-protein kinase 36 (STK36), ULK1 have been most extensively studied.
  • 644
  • 20 Jan 2023
Topic Review
Regenerative Medicine Bioconjugated Hydrogel Scaffolds
Materials used for regenerative medicine purposes pose a series of challenges in terms of biocompatibility, adaptability and functionality. A way to design functional and compatible materials that mimic soft tissue is to exploit synthetic hydrogels. To widen their activity scope, hydrogels can be coupled with molecular cues to promote tissue regeneration or trigger regeneration processes. Within this entry we asses the criteria to choose the design of a bioconjugated for regenerative medicine purposes, giving relevant examples from the current literature.
  • 643
  • 21 Oct 2020
  • Page
  • of
  • 466
ScholarVision Creations