Topic Review
Nanosized Hydroxyapatite
The development of new materials based on hydroxyapatite has undergone a great evolution in recent decades due to technological advances and development of computational techniques. 
  • 761
  • 04 Jun 2021
Topic Review
Bioremediation of PCBs
PCB, polychorinated biphenyls, are a type of chemical that was widely used in the 1960s and 1970s, and which is a contamination source of soil and water. They are fairly stable and therefore persistent in the environment. Bioremediation of PCBs is the use of microorganisms to degrade PCBs from contaminated sites, which can be either a soil or aqueous environment. It is a process relying on multiple microorganisms' co-metabolism. Anaerobic microorganisms dechlorinate PCBs first, and other microorganisms that are capable of doing BH pathway can break down the dechlorinated PCBs to usable intermediates like acyl-CoA or carbon dioxide. If no BH pathway-caple microorganisms are present, dechlorinated PCBs can be mineralized with help of fungi and plants. However, there are multiple limiting factors for this co-metabolism.
  • 761
  • 29 Nov 2022
Topic Review
Nanomaterials in Orthodontics
Orthodontics is a branch of dentistry dealing with the improvement of occlusal conditions and facial aesthetics in both children and adults.
  • 761
  • 24 Mar 2021
Topic Review
Bimetallic Nanomaterials
Bimetallic nanomaterials (BMNs) are one kind of innovative nanomaterials, referring to nano-bimetallic alloy, intermetallic compounds, or the combination of two kinds of metallic nanoparticles. Compared with monometallic nanomaterials, BMNs perform similar or even better physical and chemical properties in the medical field. BMNs possess excellent physical and chemical properties, such as easy surface modification, superior photothermal properties, multiple catalytic properties, delicate sensitivity, and good stability. Synthesis methods of bimetallic nanomaterials. The preparation methods of BMNs commonly used for cancer therapy, such as co-reduction method, hydrothermal method, seed-mediated growth method, and electrodeposition method.
  • 760
  • 21 Dec 2022
Topic Review
Thermochromic Polymeric Films
Polymers as smart temperature sensors
  • 759
  • 12 Nov 2021
Topic Review
Self-Healing Polymer, Metal, and Ceramic Matrix Composites
Composites can be divided into three groups based on their matrix materials, namely polymer, metal and ceramic. Composite materials fail due to micro cracks. Repairing is complex and almost impossible if cracks appear on the surface and interior, which minimizes reliability and material life. In order to save the material from failure and prolong its lifetime without compromising mechanical properties, self-healing is one of the emerging and best techniques. 
  • 759
  • 07 Dec 2022
Topic Review
Reactive Oxygen Species Generated by Copper–Peptide Complexes
Reactive oxygen species (ROS) are involved in many biological and medical processes, ranging from neurodegenerative disorders and cancer to bacterial and viral diseases, and sometimes are of major commercial interest. They are important regulators of and secondary messengers in several cell-signaling pathways, including the reactive oxygen species-mediated death of different cells.
  • 758
  • 25 Mar 2022
Topic Review Peer Reviewed
Homogenization Methods of Lattice Materials
The existing methods for analyzing the behaviors of lattice materials require high computational power. The homogenization method is the alternative way to overcome this issue. Homogenization is an analysis to understand the behavior of an area of lattice material from a small portion for rapid analysis and precise approximation. This paper provides a summary of some representative methodologies in homogenization.
  • 758
  • 06 Jun 2022
Topic Review
Chitosan in Metal Nanoparticles Synthesis
Chitosan (CS) has been widely used as a surface coating for metal nanoparticles. CS can work as a reducing agent, a shape director, or a size-controllable agent in the synthesis of metal nanoparticles. The previous studies have shown that functionalizing the surface of metal nanoparticles by CS can offer many advantages, including improving physicochemical stability, a drug carrier, controlling drug release, promoting muco-adhesiveness and tissue penetration, encouraging cell interactions, and enhancing antimicrobial effects.
  • 758
  • 19 Feb 2021
Topic Review
Electrochemical Determination of Kynurenine Pathway Metabolites
Kynurenine pathway (KP) is the major catabolic route of tryptophan, which generates an important enzyme cofactor (NAD+) and a variety of bioactive metabolites (so-called kynurenines) with immunosuppressive functions or neuroprotective, antioxidant, and toxic properties. It is involved in a variety of physiological processes, especially in conditions associated with immune dysfunction, central nervous system disorders, autoimmunity, infection, diabetes, and cancer. In normal conditions, tryptophan depletion via KP is initiated by the liver enzyme tryptophan 2,3-dioxygenase (TDO) and the extrahepatic enzyme - indoleamine 2,3-dioxygenase  (IDO) that contributes minimally to this process (5–10%). The extrahepatic KP becomes quantitatively more significant under conditions of immune activation. KP metabolites are frequently found in biofluids, tissues, and cell-delivered material at low nanomolar or low micromolar concentration levels. However, in disease conditions, abnormal tryptophan metabolism can be accompanied by changes in levels of KP metabolites.
  • 758
  • 17 Nov 2021
  • Page
  • of
  • 465
ScholarVision Creations