Topic Review
CAD/CAM Ceramics
CAD/CAM ceramics present a promising alternative to metal-ceramic fixed dental prostheses.
  • 872
  • 23 Jun 2021
Topic Review
Antimony/Bismuth Chalcohalides
Despite their comparable performance to commercial solar systems, lead-based perovskite (Pb-perovskite) solar cells exhibit limitations including Pb toxicity and instability for industrial applications. To address these issues, two types of Pb-free materials have been proposed as alternatives to Pb-perovskite: perovskite-based and non-perovskite-based materials. In this entry, we briefly introduce the crystal, energy band structures and theoretical insights of Sb/Bi chalcohalides as solar abosrbers.
  • 872
  • 26 Nov 2020
Topic Review
Nanocellulose and Nanocellulose-Based Composites
Nanocellulose is the most abundant material extracted from plants, animals, and bacteria. Nanocellulose is a cellulosic material with nano-scale dimensions and exists in the form of cellulose nanocrystals (CNC), bacterial nanocellulose (BNC), and nano-fibrillated cellulose (NFC). Owing to its high surface area, non-toxic nature, good mechanical properties, low thermal expansion, and high biodegradability, it is obtaining high attraction in the fields of electronics, paper making, packaging, and filtration, as well as the biomedical industry. To obtain the full potential of nanocellulose, it is chemically modified to alter the surface, resulting in improved properties. 
  • 871
  • 25 Oct 2022
Topic Review
Selenium Nanoparticles in Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a common chronic inflammation-mediated disorder having systematic complications. RA triggers a self-directed inflammatory and immunological cascade that culminates in joint destruction. Though a range of treatment options are available, none of them are without adverse effects, leading researchers to search for alternative solutions. Nanomedicine has emerged as a powerful therapeutic alternative, and selenium (Se) is an essential micronutrient trace element that has a crucial role in human health and disease.  The potential of SeNPs can be attributed to the effect of functional groups bound to them, concentration, and most importantly to their nano range size. The antirheumatic effect of SeNPs is considerable due to its potential in amelioration of oxidative stress-mediated inflammation via downregulation of radical and nonradical species, markers of inflammation, and upregulation of inherent antioxidant defenses.
  • 871
  • 16 Aug 2021
Topic Review
Nano/Microplastics in Plants
The ubiquitous presence of microplastics (MPs) and nanoplastics (NPs) in the environment is an undeniable and serious concern due to their higher persistence and extensive use in agricultural production.
  • 870
  • 23 Nov 2021
Topic Review
Silk
Silk from the silkworm Bombyx mori is well-known for its use in clothing. Silk is also a high-performance biomaterial that is already clinically approved due to its renowned biocompatibility, low immunogenicity and tunable biodegradation (minutes to years) 
  • 870
  • 05 Apr 2021
Topic Review
Copper-Catalyzed Synthesis of Coumarins
Coumarin (2H-chromen-2-one) derivatives have important uses in medicinal and synthetic chemistry, for example, as fluorescent probes. These properties have prompted chemists to develop efficient synthetic methods to synthesize the coumarin core and/or to functionalize it. In this context, many metal-catalyzed syntheses of coumarins have been introduced; among them, copper-catalyzed reactions appear to be very promising owing to the non-toxicity and cheapness of copper complexes.
  • 870
  • 10 Dec 2021
Topic Review
HR-MAS NMR in Plant Metabolomics
Metabolomics is used to reduce the complexity of plants and to understand the underlying pathways of the plant phenotype. The metabolic profile of plants can be obtained by mass spectrometry or liquid-state NMR. Extraction of metabolites from the sample is necessary for both techniques to obtain the metabolic profile. This extraction step can be eliminated by making use of high-resolution magic angle spinning (HR-MAS) NMR which allows to get metabolic profile directly in intact plant tissues such as intact leaves. An HR-MAS NMR-based metabolomics workflow is thus established that provide a novel platform for obtaining important information of regular metabolic network non-invasively.
  • 869
  • 14 Jul 2021
Topic Review
Central-Units/Terminal-Chains on Banana-Shaped Liquid Crystals
Azo-functionalized materials are one of the appealing groups of the functionalized materials owing to their photoswitching behaviour and have been explored for various potential applications viz., optical data storage, sensor, display devices, nonlinear materials and molecular switches. Recently, azo-functionalized bent-core liquid crystals (BCLCs) have gained significant attention because they have dual properties of BCLCs and azobenzene, which enables to generate new multifaceted functional and smart materials. In this report, the recently synthesized azobenzene containing bent-core mesogens and its subclass, the so-called hockey stick and V-shaped molecules are summarized. The mesomorphic behaviour of reported BCLCs affected by the type of central core unit, the nature, number and position of the lateral substituents and the type and length of the terminal chain are discussed. The photoisomerization process of these photoresponsive BCLCs in solid, solution and mesophase, as well as the impact of light on the chemical and electrical properties of them, are discussed.
  • 869
  • 09 Oct 2020
Topic Review
Silica Pervaporation Membranes
Solvents are very critical not only to produce lifesaving drugs, but also to manufacture many household products. Hence, they are widely used in the pharmaceutical industry, petroleum refineries, paints and coatings, adhesives, printing inks, industrial cleaning and research essential to the fields of medicine and disease diagnosis. Conventional technologies such as distillation which are used to recover those solvents, are energy-intensive, inefficient and suffer from high operating and maintenance costs. Pervaporation based membrane separation overcomes these challenges and in conjunction with the utilization of inorganic membranes derived from non-toxic, sufficiently abundant and hence expendable, silica, allows for high operating temperatures and enhanced chemical and structural integrity, raw material abundance and easy disposability. However, silica membranes possess some disadvantages, such as an inadequacy in the complete understanding of the governing mechanism as well as compromised structural integrity towards dilute aqueous organic mixtures.  Membrane-based separation is predicted to dominate the industry in the coming decades, as the process is being understood at a deeper level, leading to the fabrication of tailored membranes for niche applications. The current review aims to compile and present the extensive and often dispersive scientific investigations to the reader and highlight the current scenario as well as the limitations suffered by this mature field. In addition, viable alternative to the conventional methodologies, as well as other rival materials in existence to achieve membrane-based pervaporation are highlighted.
  • 869
  • 13 Aug 2020
  • Page
  • of
  • 465
ScholarVision Creations