Topic Review
Silver Nanoparticles
The silver nanoparticles (AgNPs) have been shown to have bactericidal action. In this study, we demonstrated that ultraviolet A (UVA) irradiation of AgNPs is effective at enhancing their activity. This bactericidal effect is attributable to the UV irradiation-mediated enhanced production of highly reactive hydroxyl radicals generated from AgNPs. The method of UV irradiation is very simple. The UV radiation used in this study was UVA, which is safer for humans than UVC as known to have a strong bactericidal activity. Although challenges persist regarding the effects of AgNPs on human health and the elucidation of the molecular mechanisms underlying the generation of radicals, our findings would contribute to the development of medical materials for further protection against infection.
  • 987
  • 28 Jul 2020
Topic Review
Compatibilization in Starch/Synthetic Biodegradable Polymer Blends
The immiscibility issue between starch and synthetic polymers impacts the water absorption, thermo-mechanical properties, and chemical stability demanded by various engineering applications. Incorporating compatibilizers into the blend mixtures has significantly reduced the particle sizes of the dispersed phase while improving the interfacial adhesion between the starch and synthetic biodegradable polymer, leading to fine and homogeneous structures.
  • 986
  • 28 Mar 2022
Topic Review
Nanocellulose from Agricultural Wastes
Nanocellulose-based composites are characterized for being highly biocompatible and scarcely toxic, which are the the major reasons for its use in numerous biomedical applications. Incorporation of nanocellulose to drug delivery systems could control both the manner drugs are released and the interactions with target molecules, thus increasing the effectiveness of drug administration. Changes on nanocellulose surface must be carried out to link drugs, non-ionic chemicals with hydrophobic character, to the nanopolymer.
  • 987
  • 18 Sep 2021
Topic Review
Hydroxyapatite and Derivatives for Photocatalytic and Antibacterial Applications
Hydroxyapatite (HAp) is an attractive bioceramic from an environmental point of view. It mainly allows ion exchange between Ca2+ and other metal ions, making it an attractive material in the photodegradation of aquatic life effluents. Strategies for the performance of HAp-based functionalized material were reported, for example, doping, immobilization, deposition, incorporation, and support. Due to the production of stoichiometric defects capable of estimating response in the presence of light (UV, visible or solar) through charge carriers' interaction and/or mobility. Its favors photocatalytic performance and positive responses in the physicochemical properties to form an effective and sustainable photocatalyst.  
  • 985
  • 26 May 2022
Topic Review
Valence-shell Electron-pair Repulsion Model
There are the following main assumptions of the Valence-shell Electron-pair Repulsion (VSEPR) model. - The arrangement of covalent bonds of the atom centre analyzed depends on the number of electron pairs in its valence shell: bonds and nonbonding pairs as lone electron pairs. - The arrangement of valence electron pairs around the centre considered is to maximize their distances apart. - The non-valence electrons - inner electrons with nucleus (i.e. the core) possess the spherical symmetry (or at least it is in force for the main groups elements). It is worth to note that the intra- and intermolecular interactions influence on electronic and molecular structures in accordance with this VSEPR model.
  • 985
  • 06 Sep 2021
Topic Review
In Situ Polymerization for Composites
Due to the extremely low viscosity of the cyclic lactams and the superior mechanical properties of the polymers obtained from them, these materials have great potential for application in different liquid composite molding (LCM) techniques. Unsurprisingly, extensive academic research has been conducted over the past years to investigate possible industrial applications of anionically polymerized thermoplastic composites (TPCs) reinforced with glass, carbon, aramid, or natural fibers. It is important to remember that enormous progress has been made in the development of machinery and materials. There are different types of reactive processes for obtaining Nylon-6 composites; some of the main technologies are presented.
  • 985
  • 19 May 2022
Topic Review
Design of Calcium-Binding Proteins to Sense Calcium
Ca2+ is the most ubiquitous signaling molecule in the human body, regulating numerous biological functions including heartbeat, muscle contraction, neural function, cell development, and cell proliferation. Calcium dynamics result from fluxes in Ca2+ concentrations that vary in amplitude and duration, between intracellular compartments and between the intracellular and extracellular space and intracellular organelles. Calcium controls numerous biological processes by interacting with different classes of calcium binding proteins (CaBP’s), with different affinities, metal selectivities, kinetics, and calcium dependent conformational changes.
  • 985
  • 18 Feb 2022
Topic Review
Functional Treatments for Modified Wood
Wood modification has been defined by Hill as a process that “involves the action of a chemical, biological or physical agent upon the material, resulting in a desired property enhancement during the service life of the modified wood. The modified wood should itself be nontoxic under service conditions, and furthermore, there should be no release of any toxic substances during service, or at end of life, following disposal or recycling of the modified wood. If the modification is intended for improved resistance to biological attack, then the mode of action should be non-biocidal.”
  • 984
  • 03 Jun 2021
Topic Review
Heterogeneous Catalysis for Selective Hydrogenation of Oximes
The synthesis of many biologically active compounds is not complete without transforming the carbonyl group into an amino group, carried out by the reaction of nucleophilic substitution with hydroxylamine at the carbonyl carbon atom and further reduction of the C–N and N–O bonds. This method eliminates nitrating agents that exhibit oxidizing properties and may cause undesirable effects on other structural fragments of complex molecules. Selective hydrogenation of oximes over heterogeneous catalysts is still one of the most useful and challenging reactions in synthetic organic chemistry to obtain amines and hydroxylamines since the 1920s when the Adam’s catalyst was first used for this reaction. 
  • 985
  • 28 Dec 2022
Topic Review
Nanostructured Materials for VOC Sensing
Environmental pollution related to volatile organic compounds (VOCs) has become a global issue which attracts intensive work towards their controlling and monitoring. To this direction various regulations and research towards VOCs detection have been laid down and conducted by many countries. Distinct devices are proposed to monitor the VOCs pollution. Among them, chemiresistor devices comprised of inorganic-semiconducting materials with diverse nanostructures are most attractive because they are cost-effective and eco-friendly. These diverse nanostructured materials-based devices are usually made up of nanoparticles, nanowires/rods, nanocrystals, nanotubes, nanocages, nanocubes, nanocomposites, etc. They can be employed in monitoring the VOCs present in the reliable sources.
  • 983
  • 04 Feb 2021
  • Page
  • of
  • 465
Video Production Service