Topic Review
SIMS Applications in Metals and Alloys
Secondary Ion Mass Spectrometry (SIMS) is a powerful mass spectral imaging (MSI) technique, and it has been extensively employed for comprehensive surface analysis and characterization of materials. Its root traces back to 1910, and its early applications are in inorganic materials and semiconductors. During SIMS analysis, a high-energy primary ion beam bombards the solid surface. This interaction with the surface induces the emission of secondary ions (SIs), different from the primary ions, as well as neutral particles. These emanations originate from the top few layers of atoms at the surface. Subsequently, a mass spectrometer analyzes the extracted secondary ions, providing valuable insights into the composition and structural characteristics of the material composition. In contemporary applications, SIMS has evolved into an indispensable tool across diverse fields, such as materials research, medical research, geology, cosmochemistry, and the life sciences.
  • 133
  • 19 Feb 2024
Topic Review
Membrane Fabrication Using Recycled Waste
Polymeric membranes are generally manufactured using a variety of monomers/polymers, including polystyrene, polysulfone (PSF), polyether sulfone (PES), polyaniline, polyvinylidene fluoride (PVDF), and others. The industrial manufacturing of these chemical compounds causes significant greenhouse gas emissions. In addition, the application of these monomer/polymer compounds in daily necessities has been posing a massive burden for their post-utilization disposal. The emergence of waste and its recycling potential has attracted attention to its application in membrane fabrication. The utilization of recycled waste for fabricating the membranes can help in reducing the environmental impact by 2× amount (i.e., eliminate the use of polymer for membrane fabrication and its associated environmental impact and mitigating the effect of waste on the environment via its utilization), thus helping in maintaining environmental sustainability.
  • 414
  • 19 Feb 2024
Topic Review
High-Capacity Ni-Rich Cathode Materials for Lithium-Ion Batteries
Lithium-ion batteries are undoubtedly known as the most promising rechargeable batteries. Ternary Ni-rich Li[NixCoyMnz]O2 and Li[NixCoyAlz]O2 cathode materials stand as the ideal candidate for a cathode active material to achieve high capacity and energy density, low manufacturing cost, and high operating voltage.
  • 312
  • 19 Feb 2024
Topic Review
Solid-State Modification for Thermoplastic Polymers
Solid-state modification of post-synthetic thermoplastic polymers is a rapidly evolving technique with numerous advantages and potential applications. This approach is particularly attractive because it allows adding new functionalities to existing polymer matrices, thereby extending their utility or assigning new purposes.
  • 169
  • 19 Feb 2024
Topic Review
[M(Salen)] Complexes, Their Polymers, and Composites Based Thereon
The polymers of square–planar complexes of 3d metal (M) atoms with tetradentate N2O2 Schiff base ligands, the so-called salen complexes ([M(Salen)]), are characterized by high redox conductivity, electrochromic behavior, and selective catalytic activity in heterogeneous reactions (including electrocatalysis). An important advantage of these polymers is also their high thermal stability (up to 350 °C) compared with monomer complexes due to their conductive polymer matrix. It is also expected that the synthesis of nanocomposites based on poly-[M(Salen)] and various forms of carbon (mesoporous and activated carbon), including nanostructured ones (carbon nanotubes, graphene, and nanoglobular carbon), will lead to the development of materials with improved energetic, catalytic, and other characteristics. This quality improvement is achieved due to the uniform distribution of the polymer on the surface of the carbon component of the composite material, which has a high specific surface area, electrical conductivity, and mechanical properties (strength, elasticity).
  • 264
  • 18 Feb 2024
Topic Review
DNA-Based Fluorescent Nanoprobe for Cancer Cell Membrane Imaging
As an important barrier between the cytoplasm and the microenvironment of the cell, the cell membrane is essential for the maintenance of normal cellular physiological activities. An abnormal cell membrane is a crucial symbol of body dysfunction and the occurrence of variant diseases; therefore, the visualization and monitoring of biomolecules associated with cell membranes and disease markers are of utmost importance in revealing the biological functions of cell membranes. Due to their biocompatibility, programmability, and modifiability, DNA nanomaterials have become increasingly popular in cell fluorescence imaging in recent years. In addition, DNA nanomaterials can be combined with the cell membrane in a specific manner to enable the real-time imaging of signal molecules on the cell membrane, allowing for the real-time monitoring of disease occurrence and progression.
  • 140
  • 18 Feb 2024
Topic Review
Agro-Food Waste Valorization for Sustainable Bio-Based Packaging
The increase in the generation of agro-food processing waste, coupled with uncontrolled disposal and inefficient recovery methods, has raised concerns among society, industries, and the research community. This issue is compounded by the accumulation of conventional synthetic packaging. Owing to their significant environmental and economic impacts, the development of sustainable, biocompatible, and biodegradable materials has become an urgent target. In this context, research efforts have been directed toward developing new packaging materials based on renewable sources, such as agro-food waste, contributing to the circular economy concept.
  • 276
  • 17 Feb 2024
Topic Review
SmCo5 Transition Metal Substitution
SmCo5 constitutes one of the strongest classes of permanent magnets, which exhibit magnetocrystalline anisotropy with uniaxial character and enormous energy and possess high Curie temperature. The group of transition metals are sometimes mentioned as the d-block elements due to the fact that d electrons are the external unfilled shells. They are contained within the middle area of the periodic table and are most important for magnetic materials belonging in the fourth period (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), with the exception of Nb, which belongs to the fifth. The electron configuration in is (n−1)d1–10 ns2; however, in some cases in intermetallics, the electrons are distributed in a different manner and subshells or partially filled orbitals may arise. Most common cations have a valence of +2 or +3, but there are some that may provide only one electron forming +1 cations or in some cases higher.
  • 612
  • 17 Feb 2024
Topic Review
Metal–Organic Framework-Based Nanozymes
A nanozyme is a nanoscale material having enzyme-like properties. It exhibits several superior properties, including low preparation cost, robust catalytic activity, and long-term storage at ambient temperatures. Moreover, high stability enables repetitive use in multiple catalytic reactions. Hence, it is considered a potential replacement for natural enzymes. Enormous research interest in nanozymes has made it imperative to look for better enzyme-mimicking materials for biomedical applications. Given this, research on metal–organic frameworks (MOFs) as a potential nanozyme material has gained momentum. MOFs are advanced hybrid materials made of inorganic metal ions and organic ligands. Their distinct composition, adaptable pore size, structural diversity, and ease in the tunability of physicochemical properties enable MOFs to mimic enzyme-like activities and act as promising nanozyme candidates. 
  • 100
  • 17 Feb 2024
Topic Review
Physicochemical Properties of Tungsten Trioxide Photoanodes
Advanced Oxidation Processes (AOPs) are widely regarded as the most effective method for rapidly degrading and oxidizing organic pollutants in water treatment, with chemical methods demonstrating high efficiency, especially for addressing organic wastewater.
  • 151
  • 09 Feb 2024
  • Page
  • of
  • 465
Video Production Service