Topic Review
3D Live Cell Imaging Challenges
Relevant samples are described and various problems and challenges—including 3D Challenges of 3D imaging by optical sectioning, light scattering and phototoxicity—are addressed. Furthermore, enhanced methods of wide-field or laser scanning microscopy together with some relevant examples and applications are summarized. In the future one may profit from a continuous increase in microscopic resolution, but also from molecular sensing techniques in the nanometer range using e.g., non-radiative energy transfer (FRET).
  • 677
  • 23 Aug 2021
Topic Review
3D-Printed Silica Glass
Glass technologies for 3D printing can be divided into several categories according to the printing method and the form of pre-treatment for the raw materials. These categories include powder-based, photopolymerization-based, and material extrusion-based 3D printing technology. Among them, fused deposition modeling (FDM), based on material extrusion (MEX), and selective laser sintering/melting (SLS/SLM), based on powder, usually require strict processing conditions and are therefore less suitable for laboratory processing. The most promising processing technologies are stereolithography (SLA), digital light processing (DLP), two-photon polymerization (TPP), sheet lamination (SL), which is based on photopolymerization, and DIW, based on MEX.
  • 850
  • 28 Feb 2022
Topic Review
A Specialty Fiber for Distributed Acoustic Sensing Technology
Specialty fibers have introduced new levels of flexibility and variability in distributed fiber sensing applications. In particular, distributed acoustic sensing (DAS) systems utilized the unique functions of specialty fibers to achieve performance enhancements in various distributed sensing applications. 
  • 773
  • 28 Apr 2022
Topic Review
Advancement in UV-Visible-IR Camouflage Textiles & Camouflage Physics
Optical theory of Camouflage engineering has been invented for defence protection. This optical theory can be implemented by defence scientists to explore camouflage products and multidimensional branches of optical technologies. Advancement in ultraviolet-visible-near infrared (UV-Vis-IR) camouflage engineering has been designed for defence protection. Camouflage physics has been explained through camouflage textiles and camouflage materials. This technique of camouflage engineering can be explored to defence technology for the design and manufacturing of combat product against multidimensional combat backgrounds such as dry leaves, green leaves, tree bark-woodland combat background; water-marine combat background; sand-desertland combat background; stone-stoneland combat background; snow-snowland combat background; sky combat background; ice-iceland combat background and concrete-concreteland combat background (DGTWSICB). This is a novel addition of camouflage technology for the engineering progress of camouflage product design. Hence, camouflage engineering has been briefly reported by “Anowar Hossain’s invention of camouflage physics at PhD School, first version submitted to Nobel committee for Nobel nomination in 2023 under affiliation of RMIT University”. http://dx.doi.org/10.13140/RG.2.2.29936.23048, https://doi.org/10.5281/zenodo.8286832
  • 303
  • 06 Oct 2023
Topic Review
Advancing Surface Plasmon Enhanced Fluorescence based POC technologies
Point-of-care (POC) diagnostic platforms are globally employed in modern smart technologies to detect events or changes in the analyte concentration and provide qualitative and quantitative information in biosensing. Surface plasmon-coupled emission (SPCE) technology has emerged as an effective POC diagnostic tool for developing robust biosensing frameworks. The simplicity, robustness and relevance of the technology has attracted researchers in physical, chemical and biological milieu on account of its unique attributes such as high specificity, sensitivity, low background noise, highly polarized, sharply directional, excellent spectral resolution capabilities.
  • 74
  • 18 Jan 2024
Topic Review
Allying Meta-Structures with Diverse Optical Waveguides for Integrated-Photonics
Recent years have witnessed tremendous interest in synergizing various functional subwavelength structures into diverse optical waveguide platforms to enable versatile photonic meta-devices. The advancement of meta-waveguides not only extends meta-optics into the manipulation of guided wave, but may also reshape the landscapes of photonic integrated circuits and massive emergent applications. A recent review paper outlined latest progress on meta-waveguides-based photonics devices and systems. Both forward and inverse designed scenarios are cataloged showcasing vibrant opportunities.
  • 1.0K
  • 13 Dec 2021
Topic Review
An introduction to the Recent Advances in Nanophotonics
Nanophotonics is an emerging multidisciplinary frontier of science and engineering. Its high potential in contributing to the development of many areas of technology makes nanophotonics a focus of interest for many researchers from different fields.
  • 426
  • 09 Feb 2022
Topic Review
Application of Two-Dimensional Materials towards CMOS-Integrated Gas Sensors
The semiconductor metal oxide (SMO)-based gas sensor, considered the current workhorse of semiconductor-based chemiresistive gas sensor technologies, requires high temperatures to initiate the surface reactions which result in the sensing response, making it difficult to fabricate and prone to high mechanical instability. Therefore, alternatives at lower temperatures are desired, where 2D materials seem to hold the most promise. Even at ambient temperature, their sensitivity is extraordinarily large due to their extremely high surface-to-volume ratio. However, some ongoing issues still need to be resolved before gas sensors based on 2D materials can be widely used and commercialized. The alternative room temperature solutions involve optical signals, either by designing an nondispersive infrared (NDIR) sensor based on the Beer-Lambert law or by introducing an additional UV illumination to SMO sensors. In both cases, complementary metal oxide semiconductor (CMOS) integration is not feasible, which is why continued interest in 2D-material-based gas sensors persists.
  • 844
  • 02 Dec 2022
Topic Review
Applications of Droplet Microsystems in Optics and Photonics
The micro- and nano-machining techniques applied to solid materials have yielded remarkable success in the semiconductor industry by integrating complex functionalities into microscale devices, thus spearheading the modern electronics revolution. Extending similar miniaturization strategies to process and assemble soft matter for creating multileveled functional structures over various length scales presents significant scientific and practical potential. Soft matter, including liquid crystals (LC), colloids, polymers, and biological substances, exhibits widespread influence across nature, living organisms, daily life, and industry. The biomimetic properties, responsiveness to stimuli, and efficacy in controlled release and sensing make soft matter extensively applicable in biology and chemistry.
  • 57
  • 18 Mar 2024
Topic Review
Astrophotonic Spectrographs
Astrophotonics is the application of photonic technologies to channel, manipulate, and disperse light from one or more telescopes to achieve scientific objectives in astronomy in an efficient and cost-effective way. Utilizing photonic advantage for astronomical spectroscopy is a promising approach to miniaturizing the next generation of spectrometers for large telescopes. 
  • 562
  • 23 Jun 2021
  • Page
  • of
  • 14