Topic Review
Plasmons
 We briefly review applications of surface-plasmon polariton modes, related to the design and fabrication of electro–optical circuits.
  • 7.6K
  • 30 Oct 2020
Topic Review
Optical Phase Shifters
Optical phase shifters have the functionality to control the phase of light by a change in the effective refractive index. In a Si photonics platform, it is an essential part composing optical modulators as well as switches in Si photonics. The realization of a silicon optical phase shifter marked a cornerstone for the development of silicon photonics, and it is expected that optical interconnects based on the technology relax the explosive datacom growth in data centers. High-performance silicon optical modulators and switches, integrated into a chip, play a very important role in optical transceivers, encoding electrical signals onto the light at high speed and routing the optical signals, respectively. The development of the devices is continuously required to meet the ever-increasing data traffic at higher performance and lower cost.
  • 5.8K
  • 08 Jun 2021
Topic Review
Laser Absorption Spectroscopy
Laser absorption spectroscopy (LAS) is an absorption spectroscopic method that employs a laser as the light source and measures the chemical concentration based on detection of a variation of laser beam intensity after transmission along the optical path. 
  • 5.1K
  • 10 Sep 2020
Topic Review
Principles of SERS
SERS (Surface-enhanced Raman spectroscopy) is based on the amplification of the Raman response of an analyte interacting with the surface plasmon of metals such as Au, Ag, or Cu; in some cases, the response results enough to achieve the single–molecule detection
  • 4.5K
  • 21 Apr 2021
Topic Review
Compositional Engineering of Perovskites
We give a systematic overview of compositional engineering by distinguishing the different defect-reducing mechanisms. Doping effects are divided into influences on: (1) crystallization; (2) lattice properties. Incorporation of dopant influences the lattice properties by: (a) lattice strain relaxation; (b) chemical bonding enhancement; (c) band gap tuning. The intrinsic lattice strain in undoped perovskite was shown to induce vacancy formation. The incorporation of smaller ions, such as Cl, F and Cd, increases the energy for vacancy formation. Zn doping is reported to induce strain relaxation but also to enhance the chemical bonding. The combination of computational studies using (DFT) calculations quantifying and qualifying the defect-reducing propensities of different dopants with experimental studies is essential for a deeper understanding and unraveling insights, such as the dynamics of iodine vacancies and the photochemistry of the iodine interstitials, and can eventually lead to a more rational approach in the search for optimal photovoltaic materials.
  • 2.5K
  • 28 Oct 2020
Topic Review
Intraretinal Fluid Pattern Characterization
The accumulation of fluids in the retinal layers is one of the main causes of blindness in developed countries. The main strategy for its study and diagnosis is through the use of Optical Coherence Tomography (OCT) images. This allows experts to observe the layers of the retina in a cross-sectional view. Commonly, for the analysis of these accumulations by means of computer diagnostic support systems, precise segmentation strategies are employed.
  • 2.4K
  • 22 Apr 2021
Topic Review
Gabor-Domain Optical Coherence Microscopy
Gabor-domain optical coherence microscopy (GDOCM) is a high transverse resolution variant of spectral domain optical coherence tomography (SD-OCT). It was proposed to break the cellular resolution limit of optical coherence tomography (OCT). GDOCM achieves invariant transverse and axial resolutions of 2 micron in 3D by fusing together multiple volumetric images that are acquired employing a liquid lens to dynamically refocus at different depths inside the sample with no moving parts.
  • 2.4K
  • 29 Oct 2020
Topic Review
Plasmonics in Wireless THz Nanocommunications
Wireless data traffic has experienced an unprecedented boost in the past years, and according to data traffic forecasts, within a decade, it is expected to compete sufficiently with wired broadband infrastructure. It is therefore required the use of even higher carrier frequency bands in the THz range, via adoption of new technologies to equip future THz band wireless communication systems at the nanoscale, in order to accommodate a variety of applications, that would satisfy the ever increasing user demands of higher data rates. Certain wireless applications such as 5G and beyond communications, Network on Chip system architectures, and Nanosensor networks, will no longer satisfy their speed and latency demands with existing technologies and system architectures. Apart from conventional CMOS technology, and the already tested, still promising though, photonic technology, other technologies and materials such as plasmonics with graphene respectively, may offer a viable infrastructure solution on existing THz technology challenges. This survey paper is a thorough investigation on current and beyond state of the art plasmonic system implementation for THz communications, by providing an in-depth reference material, highlighting the fundamental aspects of plasmonic technology roles in future THz band wireless communication and THz wireless applications, that will define future demands coping with users’ needs.
  • 2.0K
  • 30 Oct 2020
Topic Review
Modulators in Silicon Photonics
Silicon optical technology extends beyond just lasers, offering photonic components such as, modulators, photodetectors (PDs), splitters, (de)multiplexers, and filters.
  • 2.0K
  • 08 Feb 2022
Topic Review
Polarization Holography
Polarization holography has the unique capacity to record and retrieve the amplitude, phase, and polarization of light simultaneously in a polarization-sensitive recording material and has attracted widespread attention. Polarization holography is a noteworthy technology with potential applications in the fields of high-capacity data storage, polarization-controlled optical elements, and other related fields.
  • 1.9K
  • 23 Jan 2021
  • Page
  • of
  • 14