Topic Review Peer Reviewed
Wavefunction Collapse Broadens Molecular Spectrum
Spectral lines in the optical spectra of atoms, molecules, and other quantum systems are characterized by a range of frequencies ω or a range of wavelengths λ=2πc/ω, where c is the speed of light. Such a frequency or wavelength range is called the width of the spectral lines (linewidth). It is influenced by many specific factors. Thermal motion of the molecules results in broadening of the lines as a result of the Doppler effect (thermal broadening) and by their collisions (pressure broadening). The electric fields of neighboring molecules lead to Stark broadening. The linewidth to be considered here is the so-called parametric broadening (PB) of spectral lines in the optical spectrum. PB can be considered the fundamental type of broadening of the electronic vibrational–rotational (rovibronic) transitions in a molecule, which is the direct manifestation of the basic concept of the collapse of a wavefunction that is postulated by the Copenhagen interpretation of quantum mechanics. Thus, that concept appears to be not only valid but is also useful for predicting physically observable phenomena.
  • 781
  • 11 Apr 2023
Topic Review
Quantum Stream Cipher
Quantum cryptography includes quantum key distribution (QKD) and quantum stream cipher, but the researchers point out that the latter is expected as the core technology of next-generation communication systems. Various ideas have been proposed for QKD quantum cryptography, but most of them use a single-photon or similar signal. Then, although such technologies are applicable to special situations, these methods still have several difficulties to provide functions that surpass conventional technologies for social systems in the real environment. Thus, the quantum stream cipher has come to be expected as one promising countermeasure, which artificially creates quantum properties using special modulation techniques based on the macroscopic coherent state. In addition, it has the possibility to provide superior security performance than one-time pad cipher.
  • 771
  • 25 May 2022
Topic Review
The Concept of “Quantum-Like”
The birth and spread of the prefix “quantum-” to disciplines other than physics, and the introduction of the term “quantum-like”, reflect the increasing dissatisfaction with the perceived limits and pitfalls of classic Western thought. Of course, the latter remains valuable; what is wrong is its dogmatic use and the claim of its exclusive capacity to comprehend the world. The development of quantum physics has been paralleled by the introduction of paraconsistent logics, such as fuzzy logic and dialetheism, a clear sign of the need for smoothing the inflexibility of Aristotelian logic. There is also a fil rouge (viz. an epistemological symmetry) linking the paradigm of quantum physics to ancient pre-Socratic and Eastern philosophies, suggesting the need for reappraising them in the process of reexamination of the classical thought. The increasing use of the term “quantum-like” calls for the defining and sharing of its meaning in order to properly adopt it and avoid possible misuse. 
  • 727
  • 14 Mar 2022
Topic Review
Geiger-Marsden Experiments
The Geiger–Marsden experiments (also called the Rutherford gold foil experiment) were a landmark series of experiments by which scientists learned that every atom has a nucleus where all of its positive charge and most of its mass is concentrated. They deduced this after measuring how an alpha particle beam is scattered when it strikes a thin metal foil. The experiments were performed between 1908 and 1913 by Hans Geiger and Ernest Marsden under the direction of Ernest Rutherford at the Physical Laboratories of the University of Manchester.
  • 711
  • 25 Oct 2022
Topic Review
Bragg Grating External Cavity Semiconductor Lasers
External cavity semiconductor lasers (ECSLs) usually refer to the gain chip based on the introduction of external optical components (such as waveguides, gratings, prisms, etc.) to provide optical feedback. By designing the type, position and structure of external optical components, the optical properties of SLs (such as center wavelength, linewidth, tuning range, side-mode suppression ratio (SMSR), etc.) can be changed. Bragg grating external cavity semiconductor laser (BG-ECSL) is a device with a specific optical element (Bragg grating) in the external cavity. BG-ECSLs have excellent performances, such as narrow linewidth, tunability and high SMSR. They are widely used in WDM systems, coherent optical communication, gas detection, Lidar, atomic physics and other fields. 
  • 672
  • 09 Dec 2022
Topic Review
Event Symmetry
In physics, event symmetry includes invariance principles that have been used in some discrete approaches to quantum gravity where the diffeomorphism invariance of general relativity can be extended to a covariance under every permutation of spacetime events.
  • 670
  • 07 Nov 2022
Topic Review
Hidden-Measurements Interpretation
The hidden-measurements interpretation (HMI), also known as the hidden-measurements approach, is a realistic interpretation of quantum mechanics. The basis of the hidden-measurements interpretation (HMI) is the hypothesis that a quantum measurement involves a certain amount of unavoidable fluctuations in the way the measuring system interacts with the measured entity. As a consequence, the interaction is not a priori given in a quantum measurement, but is each time selected (that is, actualized, through a weighted symmetry breaking processes) when the experiment is executed; and since different measurement-interactions can produce different outcomes, this can explain why the output of a quantum measurement can only be predicted in probabilistic terms. (One should not think however of these hidden measurement-interactions to be something similar to, or to be describable in the same way as, the fundamental interactions (fundamental forces) of the standard model of particle physics, mediated by bosonic elementary entities).
  • 662
  • 03 Nov 2022
Topic Review
Sakurai's Bell Inequality
The intention of a Bell inequality is to serve as a test of local realism or local hidden variable theories as against quantum mechanics, applying Bell's theorem, which shows them to be incompatible. Not all the Bell's inequalities that appear in the literature are in fact fit for this purpose. The one discussed here holds only for a very limited class of local hidden variable theories and has never been used in practical experiments. It is, however, discussed by John Bell in his "Bertlmann's socks" paper (Bell, 1981), where it is referred to as the "Wigner–d'Espagnat inequality" (d'Espagnat, 1979; Wigner, 1970). It is also variously attributed to Bohm (1951?) and Belinfante (1973). Note that the inequality is not really applicable either to electrons or photons, since it builds in no probabilistic properties in the measurement process. Much more realistic hidden variable theories can be devised, modelling spin (or polarisation, in optical Bell tests) as a vector and allowing for the fact that not all emitted particles will be detected.
  • 593
  • 17 Oct 2022
Topic Review
Regularization
In physics, especially quantum field theory, regularization is a method of modifying observables which have singularities in order to make them finite by the introduction of a suitable parameter called the regulator. The regulator, also known as a "cutoff", models our lack of knowledge about physics at unobserved scales (e.g. scales of small size or large energy levels). It compensates for (and requires) the possibility that "new physics" may be discovered at those scales which the present theory is unable to model, while enabling the current theory to give accurate predictions as an "effective theory" within its intended scale of use. It is distinct from renormalization, another technique to control infinities without assuming new physics, by adjusting for self-interaction feedback. Regularization was for many decades controversial even amongst its inventors, as it combines physical and epistemological claims into the same equations. However, it is now well understood and has proven to yield useful, accurate predictions.
  • 586
  • 28 Oct 2022
Topic Review
Complementarity
In physics, complementarity is a conceptual aspect of quantum mechanics that Niels Bohr regarded as an essential feature of the theory. The complementarity principle holds that objects have certain pairs of complementary properties which cannot all be observed or measured simultaneously. An example of such a pair is position and momentum. Bohr considered one of the foundational truths of quantum mechanics to be the fact that setting up an experiment to measure one quantity of a pair, for instance the position of an electron, excludes the possibility of measuring the other, yet understanding both experiments is necessary to characterize the object under study. In Bohr's view, the behavior of atomic and subatomic objects cannot be separated from the measuring instruments that create the context in which the measured objects behave. Consequently, there is no "single picture" that unifies the results obtained in these different experimental contexts, and only the "totality of the phenomena" together can provide a completely informative description.
  • 562
  • 14 Nov 2022
  • Page
  • of
  • 6