Topic Review
Applications of Thermal Plasma Waste Treatment
Non-thermal as well as thermal plasmas are used for the processing of materials and waste. Thermal (hot) plasmas are characterized by their high energy density and by the equal temperatures of the electrons and the heavy particles, i.e., thermal plasmas are in local thermodynamic equilibrium. Non-thermal plasmas (also called cold plasmas), on the other hand, are non-equilibrium ionized gases, which are characterized by lower energy densities and by the large difference between the electron temperature and the temperature of the heavy particles.
  • 783
  • 25 Jul 2022
Topic Review
Treatment of Chrysanthemum Synthetic Seeds by SDBD Plasma
Implementation of the surface dielectric barrier discharge (SDBD) plasma treatment before sowing represents a promising strategy for future investigations and sustainable use of cold plasma in synseed biotechnology. Plasma-treated chrysanthemum synseeds showed a better survival rate and overall plantlet growth under greenhouse conditions in comparison to untreated synseeds.
  • 406
  • 12 Apr 2022
Topic Review
Plasma Modeling and Prebiotic Chemistry
The plasma kinetics involves elementary processes by which free electrons ultimately activate weakly reactive molecules, such as carbon dioxide or methane, thereby potentially starting prebiotic reaction chains. These processes include electron–molecule reactions and energy exchanges between molecules. They are basic processes, for example, in the famous Miller-Urey experiment, and become relevant in any prebiotic scenario where the primordial atmosphere is significantly ionized by electrical activity, photoionization or meteor phenomena. The kinetics of plasma displays remarkable complexity due to the non-equilibrium features of the energy distributions involved.
  • 585
  • 18 Mar 2022
Topic Review
Supersonic Flow Control
In high-speed fluid dynamics, base pressure controls find many engineering applications, such as in the automobile and defense industries. Several studies have been reported on flow control with sudden expansion duct. 
  • 1.0K
  • 02 Dec 2021
Topic Review
Single Point Mooring (SPM) Systems with Buoys
The SPM system consists of four main components, namely, the body of the buoy, the anchoring and mooring components, the fluid transfer system and the ancillary elements. Static legs linked to the seabed underneath the surface keep the buoy body in place. Above the water level, the body has a spinning portion that is attached to the offloading/loading tanker. A roller bearing, referred to as the main bearing, connects these two portions. Due to this array, the anchored tanker can easily weather-vane around the buoy and find a steady position. The concept of the buoy is determined by the type of bearing utilized and the divide between the rotating and geostatic sections. The buoy’s size is determined by the amount of counter buoyancy required to keep the anchor chains in place, and the chains are determined by environmental conditions and vessel size.
  • 9.1K
  • 19 Nov 2021
Topic Review
Aeroelasticity Methods in Turbomachinery
Aeroelastic phenomena in turbomachinery are one of the most challenging problems to model using computational fluid dynamics (CFD) due to their inherent nonlinear nature, the difficulties in simulating fluid–structure interactions and the considerable computational requirements. Nonetheless, accurate modelling of self-sustained flow-induced vibrations, known as flutter, has proved to be crucial in assessing stability boundaries and extending the operative life of turbomachinery. Flutter avoidance and control is becoming more relevant in compressors and fans due to a well-established trend towards lightweight and thinner designs that enhance aerodynamic efficiency.
  • 1.4K
  • 09 Sep 2021
Topic Review
Water Hammer Modelling
Water Hammer is a physical phenomenon that occurs due to sudden stopping of flow in a pipeline system which causes a sudden large pressure rise mimicking the hammering effect. It is considered one of the worst nightmare for hydraulic engineers due to its potential of causing widespread damage to property and lives. Therefore, numerical estimation of water hammer pressure is crucial for the design, operation, and risk analysis of pipeline systems. Generally, the traditional Method of Characteristics (MOC) is preferred by modellers worldwide due to its simplicity and usability. However, due to high shock generation during large water hammer event in pipeline, Finite Volume Method (FVM) has a clear advantage because of its desirable attribute of conserving mass, momentum compared to traditional MOC Schemes. Further, modelling of the water hammer phenomenon for dynamic characteristics within a turbine is impossible using the classical 1D MOC or 1D FVM schemes, and such applications require more extensive 3D grids and turbulence models. Several commercial pieces of software for turbulence modelling available today can be effectively used for this type of study. Some well-known and well-applied turbulence models currently in use are FLUENT and CFX (https://www.ansys.com(accessed on 1 June 2021)).
  • 693
  • 24 Jun 2021
Topic Review
The Resistive Barrier Discharge
Plasma generated by the resistive barrier discharge has been used to efficiently inactivate pathogenic microorganisms and to destroy cancer cells. These biomedical applications of low temperature plasma are of great interest because in recent times bacteria developed increased resistance to antibiotics and because present cancer therapies often are accompanied by serious side effects. Low temperature plasma, such the one generated by the resistive barrier discharge, is a technology that can help overcome these healthcare challenges.
  • 1.1K
  • 08 Feb 2021
Topic Review
Capillary-Driven Flow Device
The capillary flow device works on the principle of capillary-driven flow microfluidics and allows detection by multiple microchannels in a single microchip via smartphone imaging/portable detectors. Compared to other types of devices such as dipsticks and paper microfluidic devices, this device is fabricated with cheaper materials, coated with minute amounts of reagents and offers multiplexity on a single microchip. The sample is loaded into the microchannels via capillary force, which eliminates the requirement of external/internal fluidic mechanisms or controls. A capillary-driven flow device was developed in this study which is simple to operate and allows loading multiple samples in a single device.
  • 972
  • 30 Oct 2020
Topic Review
EUV-induced Plasma
Science related to effects in the Extreme Ultraviolet (EUV) spectrum range experienced an explosive boom of publications in the last decades. A new application of EUV in lithography was the reason for such a growth. Naturally, an intensive development in such area produces a snowball effect of relatively uncharted phenomena. EUV-induced plasma is one of those. While being produced in the volume of a rarefied gas, it has a direct impact onto optical surfaces and construction materials of lithography machines, and thus has not only scientific peculiarity, but it is also of major interest for the technological application.
  • 1.1K
  • 09 Oct 2020
  • Page
  • of
  • 2
Video Production Service