Topic Review
Pathophysiology of Septic Cardiomyopathy
Septic cardiomyopathy may be broadly defined as an acute cardiac dysfunction unrelated to ischemia that manifests in different ways: arrhythmias, left and/or right ventricular impairment during systole or diastole, with or without reduction in cardiac output. Endothelial, metabolic, and immune response abnormalities are generally involved in the pathogenesis of ventricular dysfunction and arrhythmias during sepsis, whereas the potential role of myocardial ischemia seems limited. Impaired blood flow autoregulation in coronary microcirculation and altered metabolism of lactate, free fatty acid, and glucose likely play a leading role. 
  • 475
  • 14 Sep 2022
Topic Review
Pediatric Vulvar Lichen Sclerosus
Vulvar lichen sclerosus (VLS) is a chronic inflammatory condition affecting the anogenital region, which may present in a prepubertal or adolescent patient. The most popular theories are its autoimmune and genetic conditioning, although theories concerning hormonal and infectious etiology have also been raised. The most common presenting symptoms of VLS is vulva pruritus, discomfort, dysuria and constipation. The lesions initially are white, flat-topped papules, thin plaques, or commonly atrophic patches. Purpura is a hallmark feature of VLS. The treatment includes topical anti-inflammatory agents and long-term follow-up, as there is a high risk of recurrence and an increased risk of vulvar cancer in adult women with a history of lichen sclerosus.
  • 1.1K
  • 15 Jul 2021
Topic Review
Pentosan Polysulphate as a Potential Xylan based Prebiotic
In animal husbandry, prebiotic xylans aid in the maintenance of a healthy gut microbiome. This prevents the colonization of the gut by pathogenic organisms obviating the need for dietary antibiotic supplementation, a practice which has been used to maintain animal productivity but which has led to the emergence of antibiotic resistant bacteria that are passed up the food chain to humans. Seaweed xylan-based animal foodstuffs have been developed to eliminate ruminant green-house gas emissions by gut methanogens in ruminant animals, contributing to atmospheric pollution. Biotransformation of pentosan polysulfate by the gut microbiome converts this semi-synthetic sulfated disease-modifying anti-osteoarthritic heparinoid drug to a prebiotic metabolite that promotes gut health, further extending the therapeutic profile and utility of this therapeutic molecule. Xylans are prominent dietary cereal components of the human diet which travel through the gastrointestinal tract as non-digested dietary fibre since the human genome does not contain xylanolytic enzymes. The gut microbiota however digest xylans as a food source. Xylo-oligosaccharides generated in this digestive process have prebiotic health-promoting properties. Engineered commensal probiotic bacteria also have been developed which have been engineered to produce growth factors and other bioactive factors. A xylan protein induction system controls the secretion of these compounds by the commensal bacteria which can promote gut health or, if these prebiotic compounds are transported by the vagal nervous system, may also regulate the health of linked organ systems via the gut–brain, gut–lung and gut–stomach axes. Dietary xylans are thus emerging therapeutic compounds warranting further study in novel disease prevention protocols.
  • 465
  • 12 Oct 2022
Topic Review
Peptic Ulcer Bleeding and AI
Peptic ulcer bleeding (PUB) is a common gastrointestinal (GI) emergency requiring prompt assessment, with a mortality rate of 2–10%.
  • 851
  • 17 Sep 2021
Topic Review
Peptide-Based Nanoparticles
Gene therapy offers the possibility to skip, repair, or silence faulty genes or to stimulate the immune system to fight against disease by delivering therapeutic nucleic acids (NAs) to a patient. Compared to other drugs or protein treatments, NA-based therapies have the advantage of being a more universal approach to designing therapies because of the versatility of NA design. NAs (siRNA, pDNA, or mRNA) have great potential for therapeutic applications for an immense number of indications. However, the delivery of these exogenous NAs is still challenging and requires a specific delivery system. In this context, beside other non-viral vectors, cell-penetrating peptides (CPPs) gain more and more interest as delivery systems by forming a variety of nanocomplexes depending on the formulation conditions and the properties of the used CPPs/NAs.
  • 911
  • 21 Jun 2021
Topic Review
Peripheral Artery Disease
Peripheral artery disease (PAD) is characterized by the development of atherosclerotic plaques in the lower-body conduit arteries. PAD is commonly accompanied by microvascular disease, which may result in poor wound healing, plantar ulcer development, and subsequent limb amputation. 
  • 755
  • 15 Apr 2021
Topic Review
Pharmacological Management in Diabetic Peripheral Neuropathy
Diabetic peripheral neuropathy is a common complication of longstanding diabetes mellitus. These neuropathies can present in various forms, and with the increasing prevalence of diabetes mellitus, a subsequent increase in peripheral neuropathy cases has been noted. Peripheral neuropathy has a significant societal and economic burden, with patients requiring concomitant medication and often experiencing a decline in their quality of life. There is currently a wide variety of pharmacological interventions, including serotonin norepinephrine reuptake inhibitors, gapentanoids, sodium channel blockers, and tricyclic antidepressants. 
  • 330
  • 08 Jun 2023
Topic Review
Phosphate in Primary Hyperparathyroidism
Serum phosphate is crucial in the management of kidney disease, playing a major role in vascular calcification in chronic kidney failure.  In the past 20 years, the role of phosphate has been profoundly reconsidered since many other molecules have been found to play important roles in phosphate homeostasis, beyond the well-known effect of parathyroid hormone (PTH) or renal function. The advent of new insights into phosphate metabolism must urge the endocrinologist to rethink the pathophysiology of widespread disorders, such as primary hyperparathyroidism.
  • 3.5K
  • 15 Dec 2021
Topic Review
Photodynamic Therapy and Hyperthermia
Cancer is one of the leading causes of death in humans. Despite the progress in cancer treatment, and an increase in the effectiveness of diagnostic methods, cancer is still highly lethal and very difficult to treat in many cases. Combination therapy, in the context of cancer treatment, seems to be a promising option that may allow minimizing treatment side effects and may have a significant impact on the cure. It may also increase the effectiveness of anti-cancer therapies. Moreover, combination treatment can significantly increase delivery of drugs to cancerous tissues. Photodynamic therapy and hyperthermia seem to be ideal examples that prove the effectiveness of combination therapy. These two kinds of therapy can kill cancer cells through different mechanisms and activate various signaling pathways. Both PDT and hyperthermia play significant roles in the perfusion of a tumor and the network of blood vessels wrapped around it. 
  • 458
  • 08 Oct 2021
Topic Review
Photoimmunotherapy of Ovarian Cancer
Ovarian cancer (OvCa) is the leading cause of gynecological cancer-related deaths in the United States, with five-year survival rates of 15–20% for stage III cancers and 5% for stage IV cancers. The standard of care for advanced OvCa involves surgical debulking of disseminated disease in the peritoneum followed by chemotherapy. Despite advances in treatment efficacy, the prognosis for advanced stage OvCa patients remains poor and the emergence of chemoresistant disease localized to the peritoneum is the primary cause of death. Therefore, a complementary modality that is agnostic to typical chemo- and radio-resistance mechanisms is urgently needed. Photodynamic therapy (PDT), a photochemistry-based process, is an ideal complement to standard treatments for residual disease. The confinement of the disease in the peritoneal cavity makes it amenable for regionally localized treatment with PDT. PDT involves photochemical generation of cytotoxic reactive molecular species (RMS) by non-toxic photosensitizers (PSs) following exposure to non-harmful visible light, leading to localized cell death. However, due to the complex topology of sensitive organs in the peritoneum, diffuse intra-abdominal PDT induces dose-limiting toxicities due to non-selective accumulation of PSs in both healthy and diseased tissue. In an effort to achieve selective damage to tumorous nodules, targeted PS formulations have shown promise to make PDT a feasible treatment modality in this setting. This targeted strategy involves chemical conjugation of PSs to antibodies, referred to as photoimmunoconjugates (PICs), to target OvCa specific molecular markers leading to enhanced therapeutic outcomes while reducing off-target toxicity. 
  • 536
  • 12 Aug 2021
  • Page
  • of
  • 48
Video Production Service