Topic Review
Year
A year is the orbital period of a planetary body, for example, the Earth, moving in its orbit around the Sun. Due to the Earth's axial tilt, the course of a year sees the passing of the seasons, marked by change in weather, the hours of daylight, and, consequently, vegetation and soil fertility. In temperate and subpolar regions around the planet, four seasons are generally recognized: spring, summer, autumn and winter. In tropical and subtropical regions, several geographical sectors do not present defined seasons; but in the seasonal tropics, the annual wet and dry seasons are recognized and tracked. A calendar year is an approximation of the number of days of the Earth's orbital period, as counted in a given calendar. The Gregorian calendar, or modern calendar, presents its calendar year to be either a common year of 365 days or a leap year of 366 days, as do the Julian calendars; see below. For the Gregorian calendar, the average length of the calendar year (the mean year) across the complete leap cycle of 400 years is 365.2425 days. The ISO standard ISO 80000-3, Annex C, supports the symbol a (for Latin annus) to represent a year of either 365 or 366 days. In English, the abbreviations y and yr are commonly used. In astronomy, the Julian year is a unit of time; it is defined as 365.25 days of exactly 86,400 seconds (SI base unit), totalling exactly 31,557,600 seconds in the Julian astronomical year. The word year is also used for periods loosely associated with, but not identical to, the calendar or astronomical year, such as the seasonal year, the fiscal year, the academic year, etc. Similarly, year can mean the orbital period of any planet; for example, a Martian year and a Venusian year are examples of the time a planet takes to transit one complete orbit. The term can also be used in reference to any long period or cycle, such as the Great Year.
  • 2.4K
  • 14 Oct 2022
Biography
Yakov Borisovich Zel'dovich
Yakov Borisovich Zel'dovich ForMemRS[1] (Belarusian: Я́каў Бары́савіч Зяльдо́віч, Russian: Я́ков Бори́сович Зельдо́вич; 8 March 1914 – 2 December 1987), also known as YaB,[2] was a Soviet physicist of Belarusian Jewish ethnicity, who is known for his prolific contributions in cosmology and the physics of thermonuclear and hydrodynamical phenome
  • 844
  • 22 Nov 2022
Topic Review
Yajnavalkya's 95 Years Cycle of Synchronisation
Yajnavalkya's 95 Years Cycle of Synchronisation is the model proposed by the great Indian philosopher Yajnavalkya which explains the mathematical concept of the synchronisation of the motions of the Sun and the Moon. Yajnavalkya invented the 95 years of the periodic cycle, when the solar and lunar motions get synchronised. This 95 years of the periodic cycle is also known as Yajnavalkya Cycle. 
  • 417
  • 25 Dec 2023
Topic Review
X-ray Images and Spectrograms with Spatial Resolution
X-ray imaging diagnostics based on Fresnel lenses are very promising as the field of view is of the order of 1 mm and even higher, and the spatial resolution can reach hundreds of nm. The obvious disadvantage of such diagnostics is the presence of the chromatic effect, which reduces the contrast of the image and leads to the need to use a rather narrow spectral range. The spectrographs with flat or curved crystals used have a satisfactory spectral resolution but cannot always provide sufficient luminosity and spatial resolution when it comes to obtaining images of plasma sources. Spectrometers with toroidal schemes do not have these disadvantages, but their surface is much more difficult to fabricate and the resulting schemes are difficult to set up because of the limitation in all six degrees of freedom.
  • 447
  • 16 Dec 2022
Topic Review
Wind Turbines Vibration Control
The larger wind turbines are facing higher loads, and the imperatives of mass reduction make them more flexible. Size increase of wind turbines results in higher structural vibrations that reduce the lifetime of the components (blades, main shaft, bearings, generator, gearbox, etc.) and might lead to failure or destruction. Different systems to control the vibration of wind turbines are available, acting either on the tower or directly on the blade.
  • 3.7K
  • 06 Jun 2021
Topic Review
Wearable Body Sensors
The use of wearable body sensors for health monitoring is a quickly growing field with the potential of offering a reliable means for clinical and remote health management. This includes both real-time monitoring and health trend monitoring with the aim to detect/predict health deterioration and also to act as a prevention tool. The aim of this systematic review was to provide a qualitative synthesis of studies using wearable body sensors for health monitoring. The synthesis and analysis have pointed out a number of shortcomings in prior research. Major shortcomings are demonstrated by the majority of the studies adopting an observational research design, too small sample sizes, poorly presented, and/or non-representative participant demographics (i.e., age, gender, patient/healthy). These aspects need to be considered in future research work.
  • 1.3K
  • 29 Oct 2020
Topic Review
Wearable Airbags
Fall-related injury is a common cause of mortality among the elderly. Hip fractures are especially dangerous and can even be fatal. In this study, a threshold-based preimpact fall detection algorithm was developed for wearable airbags that minimize the impact of falls on the user’s body. Acceleration sum vector magnitude (SVM), angular velocity SVM, and vertical angle, calculated using inertial data captured from an inertial measurement unit were used to develop the algorithm. To calculate the vertical angle accurately, a complementary filter with a proportional integral controller was used to minimize integration errors and the effect of external impacts. In total, 30 healthy young men were recruited to simulate 6 types of falls and 14 activities of daily life. The developed algorithm achieved 100% sensitivity, 97.54% specificity, 98.33% accuracy, and an average lead time (i.e., the time between the fall detection and the collision) of 280.25 ± 10.29 ms with our experimental data, whereas it achieved 96.1% sensitivity, 90.5% specificity, and 92.4% accuracy with the SisFall public dataset. This paper demonstrates that the algorithm achieved a high accuracy using our experimental data, which included some highly dynamic motions that had not been tested previously.
  • 1.0K
  • 01 Nov 2020
Topic Review
Vibrational Spectroscopy
Vibrational spectroscopy, as a label-free, non-invasive and non-destructive analytical technique, is a valuable technique which can provide detailed biochemical fingerprint information, based on the structure of the molecular constituents, for analysis of cells, tissues, and body fluids.
  • 775
  • 05 Feb 2021
Topic Review
Vascular Endothelial Dysfunction-Related Disease
Oxidative stress and chronic inflammation play an important role in the pathogenesis of atherosclerosis. Atherosclerosis develops as the first step of vascular endothelial dysfunction induced by complex molecular mechanisms. Vascular endothelial dysfunction leads to oxidative stress and inflammation of vessel walls, which in turn enhances vascular endothelial dysfunction. Vascular endothelial dysfunction and vascular wall oxidative stress and chronic inflammation make a vicious cycle that leads to the development of atherosclerosis.
  • 381
  • 03 Feb 2023
Topic Review
Vacuum Diffusion Bonded Ti2AlNb/Ti/TC4 Joint
The Ti2AlNb alloy was bonded to TC4 alloy using the vacuum diffusion bonding method with a Ti interlayer. The interfacial microstructure of the Ti2AlNb/Ti/TC4 joint was characterized. The relationship between the bonding parameters and the microstructure and mechanical property of the joints was explored. Results indicated that the interdiffusion of Nb and Al elements between the interlayer and substrates promoted the formation of the lamellar α + β dual-phase structure in the joint. The bonding parameters determined the diffusion distance of Nb and Al elements, thus controlling the characteristics of the lamellar α + β dual-phase structure. When the Ti2AlNb alloy and TC4 alloy were bonded at 950 °C for 30 min under a pressure of 10 MPa, the elemental diffusion in the bonding couple was sufficient and the joint possessed the maximum shear strength of 549 MPa. 
  • 507
  • 16 Jul 2021
  • Page
  • of
  • 18