Topic Review
Continuous Casting Practices for Steel
Continuous casting practices for steelmaking have been constantly evolving ever since the early 1930s, when Junghans was first researching ways to pour liquid steel into an open-bottomed, water-cooled mold, to withdraw the partially solidified steel out of it, continuously, in the form of a round or square billet or slab. He envisioned that once these continuously cast shapes had become fully frozen, their solidified ends could be cut off for further processing. In this way, they could be transformed into “rebar” to reinforce concrete, or into bars from which nails, bolts, tire cord wire, etc., could be fashioned, etc. However, long before that, Sir Henry Bessemer had proposed a far more elegant approach, involving two, contra-rotating rolls, into which liquid steel is poured, to produce a thin solidified sheet of steel directly, within a few milliseconds. This is referred to as a Near Net Shape Casting Process. After 150 years of trying, CASTRIP, a subsidiary of NUCOR, BHP, and IHI, made this process a commercial success, where many previous attempts had failed. However, there is an even better NNSC process, referred to as HSBC, or "Horizontal Single Belt Casting", that has also been commercially successful. The HSBC process is capable of casting many different grades of steel, unlike the Bessemer CASTRIP process, by casting ~10 - 15mm thick strips, that can then be rolled down to a final sheet ~1.5 - 0.5mm. thickness, in a one-step continuous process.  
  • 247
  • 06 Jun 2022
Topic Review
Applications of Magnesium and Alloys
Since its discovery, magnesium has played an influential role in society. In its early days, military applications and wars fueled its growth. For example, magnesium was weaponized to construct incendiary bombs, flares, and ammunitions that were subsequently deployed in World War II, and it caused massive conflagrations and widespread devastations. Post-War, magnesium’s availability and unique blend of properties were explored and were found to be highly attractive for an extensive range of applications. Today, magnesium is used for engineering applications in automotive, aerospace, and consumer electronics. In addition, it has a role in organic chemistry and pharmaceuticals and is used to construct several general-purpose applications, such as sporting goods, household products, and office equipment.
  • 243
  • 09 Oct 2021
Topic Review
Metallurgical Coke Structures
The structure of coke affects its reactivity and strength, which directly influences its performance in the blast furnace.
  • 222
  • 11 Feb 2022
Topic Review
Properties of Wire Arc-Sprayed Fe-Based Coatings
Among different thermal spraying methods, arc-spraying has been widely used due to its low operating costs and high deposition efficiency. The rapid progress of cored wire technology in arc-spraying has increased possibilities for the preparation of new Fe-based coating materials with enhanced properties by adding reinforcement particles and alloying elements to suit the different applications. 
  • 199
  • 09 Mar 2022
Topic Review
Artisanal and Small-Scale Gold Mining
The aim of this work is to explain the concepts of sustainability with respect to small artisanal gold mining. For this, a qualitative approach with a descriptive scope was used, for which the bibliographic review technique was conducted. In this sense, articles, theses, books and institutional documents, and any contribution related to the research topic were taken into consideration. Likewise, this documentation contributed to the delimiting aspects that allowed a contrast between the proposed definitions and small artisanal mining in the Northeast Antioquia region in Colombia. Based on the reviewed sources, different needs were recognized in artisanal small-scale gold mining in Northeast Antioquia that still need action. In conclusion, through the exposition of sustainability theories, three common factors were identified within the various positions that were raised—the environmental, economic, and sociocultural dimensions. 
  • 198
  • 27 Aug 2021
Topic Review
Mg-Zn-{Y, Ce} Alloys: Thermodynamic Modeling and Mechanical Properties
Magnesium alloys are a strong candidate for various applications in automobile and aerospace industries due to their low density and specific strength. Micro-alloying magnesium with zinc, yttrium, and cerium enhances mechanical properties of magnesium through grain refinement and precipitation hardening. 
  • 192
  • 31 Dec 2021
Topic Review
Metallurgy/Weldability of High-Strength Cold-Resistant and Cryogenic Steels
Thermomechanical Controlled Processing (TMCP), the initial microstructure and mechanical properties of rolled products made of high-strength steels, have a significant influence on the properties and reliability of welded structures for low temperature and cryogenic service.
  • 187
  • 13 Dec 2021
Topic Review
Fatigue Shear-band in Metallic Glass
Metallic glass (MG) is a class of metallic material fabricated by the fast-cooling during solidification. This alloy lacks the long-range order characteristic and the crystalline defects including grain boundaries and dislocations. The unique structural feature makes some mechanical properties of MG obviously superior than conventional crystalline alloys, such as strength, hardness, elastic limit, wear resistance, etc. It is estimated that ~90% of all mechanical failures in the structural materials are caused by fatigue. Thus, the fatigue property is an important evaluation index before a new structural material application. Without the dislocations and grain boundaries, the plastic deformation of MG occurs in the form of atomic clusters operation at room temperature, eventually leading to the generation of shear band. It is found that the fatigue damage and fracture of MGs were dominated by shear band. As a result, understanding how shear band evolution under cyclic loading is important for improving the fatigue performance of MGs.
  • 156
  • 16 Jul 2021
Topic Review
LD-Steelmaking
Basic Oxygen Furnace (BOF) steelmaking is, worldwide, the most frequently applied process. According to the world steel organization statistical report, 2021, it saw a total production share of 73.2%, or 1371.2 million tons per year of the world steel production in 2020. The rest is produced in Electric Arc Furnace (EAF)-based steel mills (26.3%), and only a very few open-hearth and induction furnace-based steel mills. The BOF technology remains the leading technology applied based on its undoubted advantages in productivity and liquid steel composition control. The BOF technology started as the LD process 70 years ago, with the first heat applied in November 1952 in a steel mill in Linz, Austria. The name LD was formed from the first letters of the two sites with the first industrial scale plants, Linz and Donawitz, both in Austria. The history and development of the process have been honored in multiple anniversary publications over the last few decades. Nevertheless, the focus of the steel industry worldwide is significantly changing following a social and political trend and the requirement for fossil-free energy generation and industrial production to be in accordance with the world climate targets committed to in relation to the decades leading up to 2050.
  • 155
  • 09 Jun 2022
Topic Review
Possibilities and Opportunities in the Indian Steel Industry
Demand for iron ore has been increasing with the increased production of iron and steel in developing countries such as India and China. However, the quality of iron ore has deteriorated over the years globally due to long-term mining. The low-grade iron requires beneficiation before agglomerating for use in the iron-making process. The iron ore interlocked with silica and alumina has to be liberated for efficient beneficiation.
  • 144
  • 22 Apr 2022
  • Page
  • of
  • 5
Top
Feedback