Topic Review
Acoustic Properties of Natural-fiber-based Composites
Recent advancement in controlling noise through sound absorption provides an opportunity to investigate various porous materials including fiber-based composites. Natural-fiber-based composites exhibit relatively good sound absorption capability due to their porous structure. Surface modification by alkali treatment can enhance the sound absorption performance. These materials can be used in buildings and interiors for efficient sound insulation. Natural-fiber-based composites have advantages such as high abrasive resistance, low emission of toxic fumes with heat, high specific strength, light weight, low cost, and eco-friendliness. Very rapid growth has been observed in the innovations and use of natural-fiber-based materials and composites for acoustic applications.
  • 3.3K
  • 24 Aug 2021
Topic Review
Optical Diffraction Tomography
Optical Diffraction Tomography (ODT) is an emerging tool for label-free imaging of semi-transparent samples in three-dimensional space. Being semi-transparent, such objects do not strongly alter the amplitude of the illuminating field.
  • 1.8K
  • 28 Jan 2022
Topic Review
Mechanical Properties of BCC-Structured High-Entropy Alloys
A new metallurgical strategy was introduced to develop advanced materials with outstanding performance—high-entropy alloys (HEAs). Today, HEAs contain five or more multiple principle metallic elements in equal or near-equal atomic percentages. HEAs’ four core effects—high configurational entropy, sluggish diffusion, severe lattice distortion, and the cock-tail effect—are mainly responsible for their various physical and mechanical properties. HEAs present promising properties, such as high strength and fracture toughness at room temperature and high temperatures and have excellent wear resistance, and corrosion resistance, along with high-temperature oxidation.
  • 1.7K
  • 28 Mar 2022
Topic Review
Different Anisotropic-Strata Interface and Refraction
The strata model inside the earth is close to physical reality. The strata layers can be macro-anisotropic but transversely isotropic, where some are vertically symmetric and the others are not. The macroscopic anisotropy is significant for seismic waves with long wave-length regarding propagation, reflection, refraction, and polarization. This topic review provides the most recent theoretical development related to geophysical applications. 
  • 1.6K
  • 03 Nov 2020
Topic Review
Acoustical Goos-Hänchen Effect
Goos–Hänchen effect was an important optical phenomenon. When an optical wave propagates from a denser medium to a thinner medium, the total reflection generates coherent interference. The final propagated wave yields a lateral displacement relative to the incidence wave at the interface. Even though optics has a coherent effect on the total reflection of a finite-sized wave and an acoustic wave is incoherent with a non-total reflection of different frequency components, recent research shows that there is an analog Goos–Hänchen effect in acoustics. 
  • 1.6K
  • 14 Apr 2021
Topic Review
Anomalous Refraction from Anisotropy Media
The transversely isotropic media with a vertical axis of symmetry (VTI media) has been the most popular model for the sedimentary rocks in the interior of the earth. These rocks are usually isotropic within a given layer but strongly anisotropic from layer to layer. Reflection and refraction of acoustic waves between the adjacent rock layers have profound implications in geophysical applications. We discuss some anomalous reflection phenomena of the acoustic wave at the interface between the layered anisotropic rock media. 
  • 1.5K
  • 03 Nov 2020
Topic Review
Sound Transmission Losses in DPS
Double panel structures (DPS) are flat or curved structural designs which consist of two opposite facesheets or panels separated by a core or cavity. The cavity may be any kind of enclosed gasses while the core may be any form of solid materials which can be architecturally designed. DPS have been used in various applications for sound insulation purpose.  First, sound incident on the incident facesheet of the DPS, transmitted through the core or cavity and then radiates from the radiating facesheet of the DPS. The ratio of the sound power incident on the incident facesheet to the sound power transmitted through the radiating facesheet is referred as the sound transmission loss of the DPS. The motivation behind the wide industrial application of DPS is owing to their potential characteristics to absorb sound more effectively. Therefore, it is of utmost importance to understand the different geometry and material constituents of the facesheets as well as core/cavity of the DPS. The knowledge of this will help designers and manufacturers to produce the most effective and optimal design of DPS capable of producing very high and desirable sound transmission losses.
  • 1.5K
  • 19 Aug 2020
Topic Review
Aggregation-Induced Emission Active Materials
The emergence and development of aggregation induced emission (AIE) have attracted worldwide attention due to its unique photophysical phenomenon and for removing the obstacle of aggregation-caused quenching (ACQ) which is the most detrimental process thereby making AIE an important and promising aspect in various fields of fluorescent material, sensing, bioimaging, optoelectronics, drug delivery system, and theranostics. hexaphenylsilole (HPS) is the common example of the AIE active molecule which exhibits enhancement in fluorescence in an aggregate state. The motions involved, such as restriction of intramolecular motion along with rotation and vibration mechanisms in the AIE active phenomenon, are well explained and accepted. The AIE luminogens have high photostability, large stoke shift, a photobleaching resistance property, and show high sensing reproducibility. This characteristic makes luminogens a promising candidate for sensing application
  • 1.3K
  • 19 Apr 2022
Topic Review
Polarization Conversion from Anisotropy Media
Anisotropy of the transmission media exerts a strong influence on the reflection and transmission coefficients. Anomalous refraction yields the consequence of polarization conversion for the refracted wave. We discuss this important physical phenomenon by invoking practical interfaces between strongly anisotropic rocks, e.g., between O-shale and A-shale.  
  • 1.2K
  • 02 Nov 2020
Topic Review
Immersive Virtual Reality
Immersive Virtual Reality (IVR) is a simulated technology used to deliver multisensory information to people under different environmental conditions. When IVR is generally applied in urban planning and soundscape research, it reveals attractive possibilities for the assessment of urban sound environments with higher immersion for human participation. In virtual sound environments, various topics and measures are designed to collect subjective responses from participants under simulated laboratory conditions. Soundscape or noise assessment studies during virtual experiences adopt an evaluation approach similar to in situ methods. 
  • 1.2K
  • 02 Feb 2021
  • Page
  • of
  • 3