Topic Review
Smart Bioinks for Printing Human Tissue Models
A bioink is a mixture of materials and biological molecules or cells to be used for bioprinting. Most bioinks are hydrogels, highly hydrated polymeric networks used to homogenously encapsulate cells by mimicking the natural extracellular matrix found in vivo. Hydrogels must meet certain characteristics to ensure they can support cell survival and function.
  • 915
  • 25 Apr 2022
Topic Review
Smart Applications of Self-Healing Polysiloxanes
Organosilicon polymers (silicones) are of enduring interest both as an established branch of polymer chemistry and as a segment of commercial products. Their unique properties were exploited in a wide range of everyday applications. The research attention polysiloxanes attracted as the materials of choice for various emerging technologies was tremendous. A rapid improvement in bulk modification strategies can be observed as well as the design of a new generation of PDMS-based smart materials, including flexible wearable electronics, sensors, coatings or e-skin. 
  • 126
  • 21 Feb 2024
Topic Review
Skin Tissue Engineering Application
Skin tissue engineering has made remarkable progress in wound healing treatment with the advent of newer fabrication strategies using natural/synthetic polymers and stem cells. Currently, stem cells and biomaterials are popularly used in the skin tissue engineering approach in different wound healing treatments. In skin tissue engineering application, stem cell facilitates in the regeneration of disintegrated tissue. Whereas, biomaterials serve as a platform to improve the engraftment of implanted cells and facilitate the function of exogenous cells by mimicking the tissue microenvironment. Hence, the combination and synergistic effect of biomaterials and stem cells have the potential to broaden the application of skin tissue engineering in wound healing treatment therapies.  
  • 2.1K
  • 19 May 2021
Topic Review
Single-Component Cationic Photoinitiators
With the advantages offered by cationic photopolymerization (CP) such as broad wavelength activation, tolerance to oxygen, low shrinkage and the possibility of “dark cure”, it has attracted extensive attention in photoresist, deep curing and other fields in recent years. The applied photoinitiating systems (PIS) play a crucial role as they can affect the speed and type of the polymerization and properties of the materials formed. Much effort has been invested into developing cationic photoinitiating systems (CPISs) that can be activated at long wavelengths and overcome technical problems and challenges faced. 
  • 693
  • 24 Jul 2023
Topic Review
Simultaneous Production of Cellulose Nitrates and Bacterial Cellulose
The scientific hypothesis about the possibility of simultaneous production of two independent of each other products from Miscanthus giganteus, namely the product of chemical modification of cellulose - cellulose nitrates and the product of biosynthesis - bacterial cellulose was tested.
  • 273
  • 27 Dec 2023
Topic Review
Siloxanes
Siloxanes are adaptable species that have found extensive applications as versatile materials for functionalising various surfaces and as building blocks for polymers and hybrid organic-inorganic systems. The primary goal of this review is to report on and briefly explain the most relevant recent developments related to siloxanes and their applications, particularly regarding surface modification and the synthesis of graft copolymers bearing siloxane or polysiloxane segments. The key strategies for both functionalisation and synthesis of siloxane-bearing polymers are highlighted, and the various trends in the development of siloxane-based materials and the intended directions of their applications are explored.
  • 1.5K
  • 08 Sep 2020
Topic Review
Silicones Renewed for Emerging Applications
Polydimethylsiloxane (PDMS) is the basis of the vast majority of silicone products that have found use in almost all areas of human activity, from cosmetics to the nuclear or aerospace industry. After 80 years from the first direct synthesis of silicones (2020), they still enjoy great interest, both scientific and applicative, being extremely versatile. Polydimethylsiloxane (PDMS), in spite of its well-defined helical structure, is an amorphous fluid even at extremely high molecular weights. The cause of this behavior is the high flexibility of the siloxane backbone and the lack of intermolecular interactions attributed to the presence of methyl groups. These make PDMS incompatible with almost any organic or inorganic component leading to phase separation in copolymers and blends. The material itself is hydrophobic and permeable to gases, with low viscosity, solubility parameters, low glass transition temperature and very low surface tension. This makes the silicones spread very easily, distinguished by their ability to form temporary films and thin coatings to more substantial durable films or with self-leveling and adhesive capacities as stand-alone sheets of different sizes and thickness, from a few micrometers to a few millimeters. One application that is based on this property is the formation of free standing, flexible submicrometric films of interest as active elements in certain devices, such as dielectric elastomer transducers (DETs). Dielectric elastomers (DEs), three-dimensional networks of long and flexible polymer chains, are soft active materials showing promising properties that mimic natural muscle for use in advanced robotics and smart prosthetics, as well as in haptic and microfluidic devices. They enjoy great interest due to their inherent flexibility, large strain, high efficiency, high energy density, and fast response of the material. In addition, some of their properties can be adjusted as required by chemical, physical or combined approaches. 
  • 546
  • 23 Jun 2021
Topic Review
Shape-Memory Polymeric Artificial Muscles
Shape-memory polymers (SMPs) are intelligent materials capable of sensing an external stimulus and entering a transient state according to a stimulus-response, and finally recovering to the initial state through a recovery process, known as the shape memory effect. 
  • 1.1K
  • 26 Oct 2020
Topic Review
Shape Memory Materials of Rubbers
Smart materials are much discussed in the current research scenario. The shape memory effect is one of the most fascinating occurrences in smart materials, both in terms of the phenomenon and its applications. Many metal alloys and polymers exhibit the shape memory effect (SME).
  • 1.0K
  • 06 Dec 2021
Topic Review
Semiconductor Gas Sensors
Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH3, but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing.
  • 2.6K
  • 10 Dec 2020
  • Page
  • of
  • 46
Video Production Service