Topic Review
Electrospinning of Nanofibrous Membrane
Among the different fabrication approaches of nanofibrous membrane, electrospinning is considered as the most favorable and effective due to its advantages of controllable process, high production efficiency, and low cost.
  • 461
  • 01 Nov 2021
Topic Review
Anthocyanin-Based Polymers for Healthcare Applications
Anthocyanins are a specific group of molecules found in nature that have recently received increasing attention due to their interesting biological and colorimetric properties that have been successfully applied in several fields such as food preservation and biomedicine. Meanwhile, the incorporation of anthocyanins into polymeric systems has become an interesting strategy to widen the applicability of these molecules and develop new smart and functional polymers in the above-cited areas. 
  • 460
  • 14 Mar 2024
Topic Review
Synthetic Polymeric Corrosion Inhibitor
An anti-corrosion inhibitor is one of the most useful methods to prevent metal corrosion toward different media. In comparison with small molecular inhibitors, a polymeric inhibitor can integrate more adsorption groups and generate a synergetic effect, which has been widely used in industry and become a hot topic in academic research.
  • 449
  • 24 Apr 2023
Topic Review
Polyaryletherketone Based Blends
Polyaryletherketone-based thermoplastic blends (PAEK) are high-performance copolymers able to replace metals in many applications including those related to the environmental and energy transition. PAEK lead to the extension of high-performance multifunctional materials to target embedded electronics, robotics, aerospace, medical devices and prostheses. Blending PAEK with other thermostable thermoplastic polymers is a viable option to obtain materials with new affordable properties.
  • 443
  • 24 Nov 2023
Topic Review
Polysaccharide-Based Hydrogels Drug Delivery in Cancer Therapy
Hydrogels are three-dimensional crosslinked structures with physicochemical properties similar to the extracellular matrix (ECM). By changing the hydrogel’s material type, crosslinking, molecular weight, chemical surface, and functionalization, it is possible to mimic the mechanical properties of native tissues. Hydrogels are currently used in the biomedical and pharmaceutical fields for drug delivery systems, wound dressings, tissue engineering, and contact lenses. Polysaccharide-based hydrogels can be used as drug delivery systems for the efficient release of various types of cancer therapeutics, enhancing the therapeutic efficacy and minimizing potential side effects.
  • 439
  • 01 Feb 2023
Topic Review
Fluoropolymer Membranes for Membrane Distillation and Membrane Crystallization
Fluoropolymer membranes are applied in membrane operations such as membrane distillation and membrane crystallization where hydrophobic porous membranes act as a physical barrier separating two phases. Due to their hydrophobic nature, only gaseous molecules are allowed to pass through the membrane and are collected on the permeate side, while the aqueous solution cannot penetrate. However, these two processes suffer problems such as membrane wetting, fouling or scaling. Membrane wetting is a common and undesired phenomenon, which is caused by the loss of hydrophobicity of the porous membrane employed. This greatly affects the mass transfer efficiency and separation efficiency. Simultaneously, membrane fouling occurs, along with membrane wetting and scaling, which greatly reduces the lifespan of the membranes. Therefore, strategies to improve the hydrophobicity of membranes have been widely investigated by researchers. In this direction, hydrophobic fluoropolymer membrane materials are employed more and more for membrane distillation and membrane crystallization thanks to their high chemical and thermal resistance. 
  • 438
  • 03 Jan 2023
Topic Review
The Pathways to Create Containers for Bacteriophage Delivery
Antimicrobial resistance is a global public health threat. One of the possible ways to solve this problem is phage therapy, but the instability of bacteriophages hinders the development of this approach. A bacteriophage delivery system that stabilizes the phage is one of the possible solutions to this problem. 
  • 426
  • 23 Feb 2022
Topic Review
Chemical Recycling for Plastic Waste
Plastics play an integral role in shaping our modern society and are ubiquitous in our daily lives. Their superior material characteristics, performance, and low production cost make them desirable for vast consumer and industrial applications. Chemical or feedstock recycling refers to any reprocessing technology directly affecting the formulation of polymeric waste or the polymer itself.  The recycling plastic waste through chemical means are explored.
  • 426
  • 23 May 2023
Topic Review
Furane-Based Photoinitiators of Polymerization
Photopolymerization is an active research field enabling to polymerize in greener conditions than that performed with traditional thermal polymerization. A great deal of effort is devoted to developing visible light photoinitiating systems. Indeed, the traditional UV (Ultra Violet) photoinitiating systems are currently the focus of numerous safety concerns so alternatives to UV light are being actively researched. However, visible light photons are less energetic than UV photons so the reactivity of the photoinitiating systems should be improved to address this issue. In this field, furane constitutes an interesting candidate for the design of photocatalysts of polymerization due to its low cost and its easy chemical modification.
  • 423
  • 09 Mar 2023
Topic Review
Applications of Polymeric Materials with Antibacterial Properties
The presence of antibiotic-resistant bacteria in people's environment is a matter of growing concern. The issue of multidrug-resistant bacteria urged the need to elaborate the novel antipathogen agents. The polymers and copolymers modified with bioactive compounds have emerged as a group of highly effective antimicrobial agents that find usage in many fields. The natural polymers have a great advantage over the synthetic ones due to their non-toxicity, biocompatibility, non-immunogenicity, and high stability. On the other hand, they are less effective in biomedical applications in comparison to synthetic polymers. The modifications that provide the natural polymers with desirable industrial activity include chemical treatment processes such as hydroxylation, carboxylation and epoxidation, or in vitro enzyme treatment.
  • 420
  • 04 Jul 2023
  • Page
  • of
  • 46
ScholarVision Creations