Topic Review
Hydrogels and Dentin–Pulp Complex Regeneration
Abstract Dentin–pulp complex is a term which refers to the dental pulp (DP) surrounded by dentin along its peripheries. Dentin and dental pulp are highly specialized tissues, which can be affected by various insults, primarily by dental caries. Regeneration of the dentin–pulp complex is of paramount importance to regain tooth vitality. The regenerative endodontic procedure (REP) is a relatively current approach, which aims to regenerate the dentin–pulp complex through stimulating the differentiation of resident or transplanted stem/progenitor cells. Hydrogel-based scaffolds are a unique category of three dimensional polymeric networks with high water content. They are hydrophilic, biocompatible, with tunable degradation patterns and mechanical properties, in addition to the ability to be loaded with various bioactive molecules. Furthermore, hydrogels have a considerable degree of flexibility and elasticity, mimicking the cell extracellular matrix (ECM), particularly that of the DP. The current review presents how for dentin–pulp complex regeneration, the application of injectable hydrogels combined with stem/progenitor cells could represent a promising approach. According to the source of the polymeric chain forming the hydrogel, they can be classified into natural, synthetic or hybrid hydrogels, combining natural and synthetic ones. Natural polymers are bioactive, highly biocompatible, and biodegradable by naturally occurring enzymes or via hydrolysis. On the other hand, synthetic polymers offer tunable mechanical properties, thermostability and durability as compared to natural hydrogels. Hybrid hydrogels combine the benefits of synthetic and natural polymers. Hydrogels can be biofunctionalized with cell-binding sequences as arginine–glycine–aspartic acid (RGD), can be used for local delivery of bioactive molecules and cellularized with stem cells for dentin–pulp regeneration. Formulating a hydrogel scaffold material fulfilling the required criteria in regenerative endodontics is still an area of active research, which shows promising potential for replacing conventional endodontic treatments in the near future.
  • 986
  • 28 Sep 2021
Topic Review
Pyrolysis of Polystyrene Waste
The manufacturing of polystyrene around the globe has escalated in the past years due to its huge applications in various areas. The perpetual market needs of polystyrene led the polystyrene wastes accretion in the landfill causing environmental deterioration. The soaring need for polystyrene also led to the exhaustion of petroleum, a non-renewable energy source, as polystyrene is a petroleum-derived product.
  • 2.0K
  • 28 Sep 2021
Topic Review
Lignocellulosic biomass Greener Pretreatment Approaches
The utilization of lignocellulosic biomass in various applications has a promising potential as advanced technology progresses due to its renowned advantages as cheap and abundant feedstock. The main drawback in the utilization of this type of biomass is the essential requirement for the pretreatment process. The most common pretreatment process applied is chemical pretreatment. However, it is a non-eco-friendly process. 
  • 930
  • 17 Sep 2021
Topic Review
Biomedical Applications of Antiviral Nanohybrids
The COVID-19 pandemic has driven a global research to uncover novel, effective therapeutical and diagnosis approaches. In addition, control of spread of infection has been targeted through development of preventive tools and measures. In this regard, nanomaterials, particularly, those combining two or even several constituting materials possessing dissimilar physicochemical (or even biological) properties, i.e., nanohybrid materials play a significant role. Nanoparticulate nanohybrids have gained a widespread reputation for prevention of viral crises, thanks to their promising antimicrobial properties as well as their potential to act as a carrier for vaccines. On the other hand, they can perform well as a photo-driven killer for viruses when they release reactive oxygen species (ROS) or photothermally damage the virus membrane. The nanofibers can also play a crucial protective role when integrated into face masks and personal protective equipment, particularly as hybridized with antiviral nanoparticles.
  • 628
  • 16 Sep 2021
Topic Review
Chitosan-Based Polyurethane Flexible Foams
Polyurethane (PUR) foam is a synthetic polymer.
  • 832
  • 14 Sep 2021
Topic Review
Topical Insulin Delivery
Insulin is one of the cheapest growth factors in the market able to accelerate the re-epithelialization and stimulate angiogenesis and cell migration. However, the effectiveness of topical insulin in wound healing is hampered by the proteases in the wound bed. The encapsulation into nanoparticles improves its stability in the wound, providing adhesion to the mucosal surface and allowing its sustained release. 
  • 758
  • 13 Sep 2021
Topic Review
Polymer-Based Thermal Management Material
The thermally conductive polymer is usually categorized into the intrinsic thermally conductive polymers and the thermally conductive polymer composites.
  • 678
  • 09 Sep 2021
Topic Review
Gelatin-Based Hybrid Scaffolds
Gelatin is a biopolymer with interesting properties that have greatly attracted the attention of many biomedical researchers, such as low antigenicity, good biodegradability, and biocompatibility in the physiological environment. The gelatin-based materials offer excellent characteristics of wound dressings. The fast degradation time and highly hydrophilic surface make gelatin inappropriate as a base material for the development of wound dressings.
  • 718
  • 08 Sep 2021
Topic Review
Hypercrosslinking of Poly(vinylbenzyl chloride) PolyHIPEs
The concept of polymer chain hypercrosslinking was introduced by Davankov, Rogoshin and Tsyurupa, using linear polystyrene or swollen gel-type poly (styrene-co-divinylbenzene) in the presence of an external crosslinker, solvent and a Lewis base as a catalyst.
  • 748
  • 30 Aug 2021
Topic Review
Reprocessable Photodeformable Azobenzene Polymers
Photodeformable azobenzene (azo) polymers are a class of smart polymers that can efficiently convert light energy into mechanical power, holding great promise in various photoactuating applications. They are typically of crosslinked polymer networks with highly oriented azo mesogens embedded inside. Upon exposure to the light of appropriate wavelength, they experience dramatic order parameter change following the configuration change of the azo units. This could result in the generation and accumulation of the gradient microscopic photomechanical force in the crosslinked polymer networks, thus leading to their macroscopic deformation. Most of the presently developed photodeformable azo polymers have stable chemically crosslinked networks, which make their reprocessing impossible, thus limiting their large scale applications. To solve this problem, reprocessable photodeformable azo polymers have been recently developed by introducing dynamic crosslinking networks (including physically crosslinked and dynamic covalent bond-crosslinked ones) into their structures. In addition, some uncrosslinked photodeformable azo polymers have also been reported and constitute one special type of reprocessable photodeformable azo polymers, whose photodeformation behaviors are mainly induced by the selective reorientation of the azo moieties (become perpendicular to the polarization direction of the polarized light) under the irradiation of either polarized blue light or interfering polarized light.
  • 622
  • 30 Aug 2021
  • Page
  • of
  • 46
ScholarVision Creations