Topic Review
Microalgae/Cyanobacteria in Biodegradation of Plastics
Cyanobacteria (e.g., Synechocystis sp. PCC 6803, and Synechococcus elongatus PCC 7942), which are photosynthetic prokaryotes and were previously identified as blue-green algae, are currently under close attention for their abilities to capture solar energy and the greenhouse gas carbon dioxide for the production of high-value products. In the last few decades, these microorganisms have been exploited for different purposes (e.g., biofuels, antioxidants, fertilizers, and ‘superfood’ production). Microalgae (e.g., Chlamydomonas reinhardtii, and Phaeodactylum tricornutum) are also suitable for environmental and biotechnological applications based on the exploitation of solar light. In recent years, several studies have been targeting the utilization of microorganisms for plastic bioremediation. Among the different phyla, the employment of wild-type or engineered cyanobacteria may represent an interesting, environmentally friendly, and sustainable option (e.g., mismanaged plastics as source of carbons for their cultivation: the connection between their simultaneous utilization for biofuels or chemicals production and microplastics consumption on the surface of basins).
  • 4.9K
  • 05 Jan 2021
Topic Review
VARTM Processed Composite Materials
Fiber-reinforced composite structures are used in different applications due to their excellent strength to weight ratio. Due to cost and tool handling issues in conventional manufacturing processes, like resin transfer molding (RTM) and autoclave, vacuum-assisted resin transfer molding (VARTM) is the best choice among industries. VARTM is highly productive and cheap. However, the VARTM process produces complex, lightweight, and bulky structures, suitable for mass and cost-effective production, but the presence of voids and fiber misalignment in the final processed composite influences its strength. Voids are the primary defects, and they cannot be eliminated completely, so a design without considering void defects will entail unreliability. Many conventional failure theories were used for composite design but did not consider the effect of voids defects, thus creating misleading failure characteristics.
  • 4.8K
  • 07 Apr 2021
Topic Review
Non-Ionic Surfactants
Surfactants are essential in the manufacture of polymeric nanoparticles by emulsion formation methods and to preserve the stability of carriers in liquid media. The deposition of non-ionic surfactants at the interface allows a considerable reduction of the globule of the emulsion with high biocompatibility and the possibility of oscillating the final sizes in a wide nanometric range.
  • 4.3K
  • 29 Jun 2021
Topic Review
Coordination Polymers
Coordination polymers are solid-state structures consisting of repeating coordination units extending in one, two or three dimensions. Fields applications of the coordination polymers in general and metal-organic frameworks in particular are briefly discussed.
  • 4.2K
  • 31 Jul 2020
Topic Review
Overview of Polylactic Acid
Poly(lactic acid) (PLA) is an important polymer that is based on renewable biomass resources. Because of environmental issues, more renewable sources for polymers synthesis have been sought for industrial purposes.
  • 4.2K
  • 20 Jul 2022
Topic Review
Porous Carbon
Porous carbons are an important class of porous materials that have grown rapidly in recent years. They have the advantages of a tunable pore structure, good physical and chemical stability, a variable specific surface, and the possibility of easy functionalization.   
  • 4.1K
  • 29 Dec 2020
Topic Review
Aloe vera
Aloe vera plant offers a sustainable solution for the removal of various pollutants from water. Due to its chemical composition, Aloe vera has been explored as coagulant/flocculant and biosorbent for water treatment. 
  • 4.1K
  • 23 Jun 2021
Topic Review
Contact Lens Materials - A Materials Science Perspective
Contact lens materials are typically based on polymer- or silicone-hydrogel, with additional manufacturing technologies employed to produce the final lens. These processes are simply not enough to meet the increasing demands from CLs and the ever-increasing number of contact lens (CL) users. New materials and engineering offer increasing functionality or improved properties over previous generations.
  • 3.8K
  • 27 Jan 2022
Topic Review
Pyrolysis
Pyrolysis: Thermochemical decomposition of organic materials in the absence of oxygen. Polymer-derived carbon: Carbon obtained by heat-treatment (pyrolysis followed by carbon-carbon bond formation and rearrangement) of natural or synthetic polymers. In addition to the supplied heat, surrounding gaseous environment, presence of magnetic field and applied pressure influence pyrolysis.
  • 3.5K
  • 01 Nov 2020
Topic Review
Synthesis of Poly (Butylene Succinate)
The impact of plastics on the environment can be mitigated by employing biobased and/or biodegradable materials (i.e., bioplastics) instead of the traditional “commodities”. In this context, poly (butylene succinate) (PBS) emerges as one of the most promising alternatives due to its good mechanical, thermal, and barrier properties, making it suitable for use in a wide range of applications. Still, the PBS has some drawbacks, such as its high crystallinity, which must be overcome to position it as a real and viable alternative to “commodities”. 
  • 3.5K
  • 25 Mar 2022
  • Page
  • of
  • 46
ScholarVision Creations