Topic Review
Skin Tissue Engineering Application
Skin tissue engineering has made remarkable progress in wound healing treatment with the advent of newer fabrication strategies using natural/synthetic polymers and stem cells. Currently, stem cells and biomaterials are popularly used in the skin tissue engineering approach in different wound healing treatments. In skin tissue engineering application, stem cell facilitates in the regeneration of disintegrated tissue. Whereas, biomaterials serve as a platform to improve the engraftment of implanted cells and facilitate the function of exogenous cells by mimicking the tissue microenvironment. Hence, the combination and synergistic effect of biomaterials and stem cells have the potential to broaden the application of skin tissue engineering in wound healing treatment therapies.  
  • 2.0K
  • 19 May 2021
Topic Review
Polarization Holography
Polarization holography has the unique capacity to record and retrieve the amplitude, phase, and polarization of light simultaneously in a polarization-sensitive recording material and has attracted widespread attention. Polarization holography is a noteworthy technology with potential applications in the fields of high-capacity data storage, polarization-controlled optical elements, and other related fields.
  • 2.0K
  • 23 Jan 2021
Topic Review
Polystyrene vs. Polylactide
Polystyrene (PS) is a thermoplastic polymer made of aromatic hydrocarbon monomer styrene that is derived from fossil-fuels. The synthesis of PS is based on the free radical polymerization of styrene using free-radical initiators. It is mostly used in solid (high impact and general purpose PS), foam and expanded PS forms. The main advantages of PS are low-cost, easy processing ability, and resistance to ethylene oxide, as well as radiation sterilization. Polylactide (PLA)—biodegradable and compostable aliphatic polyester—is one of the key biopolymers with the largest market significance. 
  • 2.0K
  • 28 Dec 2022
Topic Review
NIAS in Plastic Food Packaging
Several food contact materials (FCMs) contain non-intentionally added substances (NIAS), and most of the substances that migrate from plastic food packaging are unknown. Food packaging can contain NIAS as a result of the interactions between different substances in the packaging materials, between food content and substances (for example, additives) in FCM, from degradation processes and mainly from the impurities present in the raw materials used for FCM production. (EU) nº 10/2011 defines that “non-intentionally added substance means an impurity in the substances used or a reaction intermediate formed during the production process or a decomposition or reaction product”. Most NIAS are regularly detected when using high sensitivity analytical techniques, although the chemical structure of unknown compounds is often difficult to establish by conventional tools.
  • 1.9K
  • 01 Jul 2021
Topic Review
Fundamental Concepts of Hydrogels
Hydrogels are three-dimensional crosslinked porous networks and can be synthesized from natural polymers, synthetic polymers, polymerizable synthetic monomers, and combination of natural and synthetic polymers. Synthesis of hydrogels involves physical, chemical and hybrid bonding. The bonding is formed via different routes such as solution casting, solution mixing, bulk polymerization, free radical mechanism, radiation method, and interpenetrating network formation. The synthesized hydrogels have significant properties such as mechanical strength, flexibility, biocompatibility, biodegradability, swellability, and stimuli sensitivity. Furthermore, owing to the smart and aqueous medium, robust mechanical strength, adhesiveness, stretchability, strain sensitivity, and self-healability, hydrogels can be potentially used in biomedical, electrochemical, sensors, contact lens, and soft robotic applications.
  • 1.9K
  • 03 Dec 2020
Topic Review
Self-healing Polymeric Materials
The mechanism of self-healing, which includes the extrinsic and intrinsic approaches for each of the applications, is examined. The extrinsic mechanism involves the introduction of external healing agents such as microcapsules and vascular networks into the system. Meanwhile, the intrinsic mechanism refers to the inherent reversibility of the molecular interaction of the polymer matrix, which is triggered by the external stimuli. Both self-healing mechanisms have shown a significant impact on the cracked properties of the damaged sites.
  • 1.9K
  • 21 Apr 2021
Topic Review
Sodium Alginate
Alginian sodu (Na-Alg) jest rozpuszczalnym w wodzie, obojętnym i liniowym polisacharydem. Jest pochodną kwasu alginowego, który zawiera kwasy 1,4-β-d-mannuronowy (M) i α-l-guluronowy (G) i ma wzór chemiczny (NaC6H7O6). Wykazuje właściwości rozpuszczalne w wodzie, nietoksyczne, biokompatybilne, biodegradowalne i nieimmunogenne. Był używany do różnych zastosowań biomedycznych, wśród których najbardziej obiecujące są dostarczanie leków, dostarczanie genów, opatrywanie ran i ich gojenie.
  • 1.8K
  • 02 Feb 2021
Topic Review
Polylactic Acid and Its Synthesis
Biomaterials are natural or engineered substances that interact with components of living systems that can be exploited for a medical purpose, either as therapeutic or diagnostic agents.  Poly-(lactic Acid) (PLA) is a compostable polymer derived from corn sugar, potato, and sugar cane whose promising physicochemical properties are comparable to those of petroleum-based polymers, such as polyethylene, polypropylene, polystyrene, polycarbonate, and polyethylene terephthalate. PLA is a semicrystalline polymer that hydrolyses in physiological media, yielding lactic acid, a non-toxic component that is eliminated via the Krebs cycle as water and carbon dioxide. The biocompatibility, biodegradability, and resorbability characteristics of PLA have promoted its use in the biomedical field for a wide range of applications (suture threads, bone fixation screws, drug delivery systems, etc.), offering an alternative to conventional biocompatible materials such as metals and ceramics.
  • 1.8K
  • 30 Sep 2022
Topic Review
Supercapacitor
Supercapacitors are electrical devices for fast storage and release of electric energy utilizing charge accumulation in the electrochemical double layer. In terms of volumetric and gravimetric capacities they exceed conventional dielectric and electrolytic capacitors by several orders of magnitude. However, the low energy density of supercapacitors has seriously limited their wider application in many fields. Increase of energy density highly depends on development of a new generation of advanced electrode materials for supercapacitors.
  • 1.8K
  • 26 Oct 2020
Topic Review
Polyethylene Composites
Polyethylene (PE) is one the most used plastics worldwide for a wide range of applications due to its good mechanical and chemical resistance, low density, cost efficiency, ease of processability, non-reactivity, low toxicity, good electric insulation, and good functionality.
  • 1.8K
  • 10 Feb 2021
  • Page
  • of
  • 46