Topic Review
Polysaccharides in Agro-Industrial Biomass Residues
The use of waste biomass to produce biopolymers and nutricosmetic or pharmacological materials is increasing, although still scarcely compared to its great potential, employment, and valorization. Organic waste biomass is a great source of natural polysaccharides such as cellulose, chitin, hyaluronic acid, inulin, and pectin. Biomass from the agricultural sectors is a relevant part of waste generation and commonly comprises leaves, roots, stalks, bark, bagasse, seeds, straw, wood, animal parts, crustacean shells, and others. Polysaccharides are the most abundant biological materials on the planet. This natural abundance contributes to the discovery of their novel applications. Their industrial use is still very modest considering their versatility and great potential, although it has recently seen significant increases.
  • 910
  • 18 Mar 2022
Topic Review
Applications of High Molecular Weight Poly(Methyl Methacrylate)
Poly(methyl methacrylate) (PMMA), commonly known as plexiglass, is a kind of polymer synthesized by free radical polymerization, ionic polymerization and coordination polymerization. Poly(methyl methacrylate) (PMMA) is widely used in aviation, architecture, medical treatment, optical instruments and other fields because of its good transparency, chemical stability and electrical insulation.
  • 901
  • 12 Jul 2022
Topic Review
Chemical Depolymerization Methods of Poly(ethylene terephthalate)
The significant amount of waste generated by poly(ethylene terephthalate) (PET) requires the development of a recycling process chain in which chemical recycling plays an important role. On the one hand, it allows the depolymerization of degraded plastics that do not meet the quality requirements to be used in mechanical recycling, and on the other hand, provides an opportunity to process cheap waste and obtain products with greater added value. It can be widely used in the recycling of both packaging plastics and textiles, or other waste generated with PET.
  • 898
  • 12 Oct 2023
Topic Review
Polymer Nanocomposites
PE and PVC Polymer nanocomposites used in underground cables have been of great interest to researchers over the past 10 years.
  • 897
  • 31 Dec 2020
Topic Review
CPNHs for Fuel Cell Application
Carbon materials such as carbon graphitic structures, carbon nanotubes, and graphene nanosheets are extensively used as supports for electrocatalysts in fuel cells. Alternatively, conducting polymers displayed ultrahigh electrical conductivity and high chemical stability havegenerated an intense research interest as catalysts support for polymer electrolyte membrane fuel cells (PEMFCs) as well as microbial fuel cells (MFCs). Moreover, metal or metal oxides catalysts can be immobilized on the pure polymer or the functionalized polymer surface to generate conducting polymer-based nanohybrids (CPNHs) with improved catalytic performance and stability. Metal oxides generally have large surface area and/or porous structures and showed unique synergistic effects with CPs. Therefore, a stable, environmentally friendly bio/electro-catalyst can be obtained with CPNHs along with better catalytic activity and enhanced electron-transfer rate.
  • 896
  • 17 Feb 2021
Topic Review
Preparation of Organosiloxane Telechelics by Anionic Ring-opening Polymerization
Polydimethylsiloxanes (PDMS) telechelics are important both in industry and in academic research. They are used both in the free state and as part of copolymers and cross-linked materials. The most important, practically used, and well-studied method for the preparation of such PDMS is diorganosiloxane ring-opening polymerization (ROP) in the presence of nucleophilic or electrophilic initiators. Anionic ring opening polymerization (AROP) under the action of various nucleophilic reagents is widely used for the synthesis of high molecular weight polydiorganosiloxane telechelics with various organic surroundings of the siloxane chain. In the process of cyclosiloxane opening and chain growth, side processes may occur: depolymerization due to the breaking of the linear chain by the active center (backbiting reaction) with the formation of low molecular weight cyclic products, and chain transfer reaction, in which the terminal active site attacks the siloxane bond of another polymer chain, leading to a redistribution of macromolecules, which is also called equilibration
  • 885
  • 24 Jun 2022
Topic Review
Solid-State Polymer Electrolytes for Lithium Batteries
In all-solid-state rechargeable lithium batteries, the solid-state electrolyte is located between the cathode and the anode, acting as an electrolyte and a separator, so the performance of the solid-state electrolyte is crucial to the performance of the entire battery.
  • 884
  • 23 Nov 2022
Topic Review
Electrospun PVC Nanofibers
Electrospun PVC Nanofibers means PVC nanofibers manufactured by electrospinning.
  • 878
  • 19 Feb 2021
Topic Review
Aromatic Polyimide Films for Electronic Applications
Aromatic polyimides have excellent thermal stability, mechanical strength and toughness, high electric insulating properties, low dielectric constants and dissipation factors, and high radiation and wear resistance, among other properties, and can be processed into a variety of materials, including films, fibers, carbon fiber composites, engineering plastics, foams, porous membranes, coatings, etc. Aromatic polyimide materials have found widespread use in a variety of high-tech domains, including electric insulating, microelectronics and optoelectronics, aerospace and aviation industries, and so on, due to their superior combination characteristics and variable processability. In recent years, there have been many publications on aromatic polyimide materials, including several books available to readers. In this review, the representative progress in aromatic polyimide films for electronic applications, especially in our laboratory, will be described.
  • 870
  • 05 Apr 2022
Topic Review
Incorporation of Biochar
Biochar can be used as a reinforcing filler improving the mechanical, thermal and even electrical properties of polymer composites. The incorporation of this cost effective sustainable filler not only improves the applicability of the resulting composite but also makes the process and end product sustainable. 
  • 868
  • 25 Aug 2021
  • Page
  • of
  • 46
ScholarVision Creations