Topic Review
Synthetic Dyes
Synthetic dyes are commonly used in food products like soft drinks, vegetable sauces, jellies, etc. Most artificial dyes can cause cancer, therefore it is very important to develop sensors to detect them in food samples.
  • 3735
  • 09 Jun 2021
Topic Review
Wearable Actuators
Applications of wearable actuators mainly include wearable robotics, haptic devices, and smart textiles. Wearable robotics have been proven valuable in rehabilitation, body assistance, and/or virtual reality. These applications cover systems of various sizes, from millimeter-scale biorobots to large deployable structures.
  • 206
  • 03 Sep 2021
Topic Review
Silk from the silkworm Bombyx mori is well-known for its use in clothing. Silk is also a high-performance biomaterial that is already clinically approved due to its renowned biocompatibility, low immunogenicity and tunable biodegradation (minutes to years) 
  • 160
  • 05 Apr 2021
Topic Review
Temperature Sensors for Thermoregulation in Personal Protective Equipment
The exposure to extreme temperatures in workplaces involves physical hazards for workers. A poorly acclimated worker may have lower performance and vigilance and therefore may be more exposed to accidents and injuries. Due to the incompatibility of the existing standards implemented in some workplaces and the lack of thermoregulation in many types of protective equipment, thermal stress remains one of the most frequent physical hazards in many work sectors. In order to provide a better protection of individuals against thermal aggressors, the scientific community has been interested in the development of the textile-based or flexible temperature sensors that can be integrated into personal protective equipment. These sensors can measure the skin temperature and monitor the microclimate temperature between the body and the clothing or the outside temperature during exposure to thermal aggressors. 
  • 143
  • 29 Jan 2022
Topic Review
Microelectronics for E-Textile
Modern electronic textiles are moving towards flexible wearable textiles, so-called e-textiles that have micro-electronic elements embedded onto the textile fabric that can be used for varied classes of functionalities. There are different methods of integrating rigid microelectronic components into/onto textiles for the development of smart textiles, which include, but are not limited to, physical, mechanical, and chemical approaches. The integration systems must satisfy being flexible, lightweight, stretchable, and washable to offer a superior usability, comfortability, and non-intrusiveness. Furthermore, the resulting wearable garment needs to be breathable.
  • 141
  • 17 Sep 2021
Topic Review
Cellulose Fiber
Cellulose Fiber (CF) is one of the most abundant natural resources in the world, and it is widely found in agricultural residues, such as rice straw, rice husk, maize straw, bagasse, wood shavings, wood chips, bamboo chips, etc. These agricultural residues are mainly composed of cellulose, hemicellulose, lignin, pectin, wax and some water-soluble materials. Cellulose is the most important component of CF, and its chemical formula is (C6H10O5)n. 
  • 132
  • 11 Feb 2022
Topic Review
Washing Damage in E-Textiles
E-textiles, hybrid products that incorporate electronic functionality into textiles, often need to withstand washing procedures to ensure textile typical usability. Yet, the washability—which is essential for many e-textile applications like medical or sports due to hygiene requirements—is often still insufficient. The influence factors for washing damage in textile integrated electronics as well as common weak points are not extensively researched, which makes a targeted approach to improve washability in e-textiles difficult. 
  • 128
  • 25 May 2021
Topic Review
Architecture of E-Textiles
E-textiles are the traditional textiles of different hierarchies embedded with multifunctional nanomaterials to be utilized in different areas, for instance, human motion monitoring, i.e., joints bending, walking, running, facial expression, vocal vibration, pulse, breathing, laughing, etc., healthcare applications, i.e., EMG, ECG, EEG, sleep monitoring, drug delivery, cell culture, etc., thermal heating, electromagnetic shielding, antimicrobial protection, self-cleaning, energy storage/harvesting, fire alarm, electronic display, color-changing, etc. with a wide spectrum of functions by mitigating the wear complexities associated with non-flexible and bulky wearable electronics. 
  • 107
  • 29 Jun 2022
Topic Review
Protective Face Masks
The pandemic has resulted in the loss of lives and has caused economic hardships. Most of the devices used to protect against the transmission of the novel COVID-19 disease are related to textile structures. Hence, the challenge for textile professionals is to design and develop suitable textile structures with multiple functionalities for capturing viruses, passivating them, and, at the same time, having no adverse effects on humans during the complete period of use. In addition to manufacturing efficient, biocompatible, and cost-effective protective face masks, it is also necessary to inform the public about the benefits and risks of protective face mask materials.
  • 107
  • 27 Apr 2021
Topic Review
Textile-Based Mechanical Sensors
Innovations related to textiles-based sensors have drawn great interest due to their outstanding merits of flexibility, comfort, low cost, and wearability. Textile-based sensors are often tied to certain parts of the human body to collect mechanical, physical, and chemical stimuli to identify and record human health and exercise. Until now, much research and review work has been carried out to summarize and promote the development of textile-based sensors. As a feature, we focus on textile-based mechanical sensors (TMSs), especially on their advantages and the way they achieve performance optimizations
  • 104
  • 04 Nov 2021
  • Page
  • of
  • 2