Topic Review
Nanocellulosic Materials for Oil Spill
Modern developments in cellulosic materials for oil spill removal are briefly showcased in this entry. Different types of lignocellulosic textures and different modification techniques and preparation methods are explained. Materials were classified into 3D-materials such as hydrophobic and oleophobic sponges and aerogels, or 2D-materials such as membranes, fabrics, films, and meshes. Majorly, 3D-materials showed clear correlation between porosity and density, and their absorption behavior. Moreover, it was shown that nanocellulosic precursors are not exclusively suitable to attain considerable absorption performance. This finding can lead to developments in cost- and energy-efficient production processes of future cellulosic oil spillage removal solutions.
  • 642
  • 27 Sep 2021
Topic Review
Processing Technology of Thermoplastic-Bonded Wood-Based Panels
When thermoplastic resins such as polyethylene (PE) and polypropylene (PP) are selected as wood adhesives to bond wood by using the hot-pressing technique, the formaldehyde emission issue that has long existed in the wood-based panel industry can be effectively solved. Thermoplastic bonded wood-based panels presented relatively higher mechanical properties, better water resistance and machinability than the conventional urea-formaldehyde resin bonded wood-based panels. Compared with the wood-plastic composites manufactured by extruding or injection-molding methods, thermoplastic bonded wood-based panels have the advantages of larger size, wider raw material range and higher production efficiency. 
  • 616
  • 26 Jan 2022
Topic Review
Structures and Characteristics of Cellulose and Nanocellulose
Nickerson and Habrl extracted nanomaterials named nanocellulose (NC) from cotton linters by using sulfuric-acid hydrolysis in 1947. Since then, various physical and chemical properties of NC, such as its low weight, low cost, high strength, stiffness, and non-toxic properties have been comprehensively investigated in both academia and industry.
  • 590
  • 19 May 2023
Topic Review
Phase Change Materials for Thermal Regulative Wood-Based Products
Wood is an excellent building material or component that has been used all over the world. The rise in energy consumption worldwide, particularly in the building sector, has led to the development of diverse methods to overcome this problem. Embedding phase change material, phase change material (PCM), into the wood has been researched as one of the most effective alternatives of controlling the thermal loads of wood, as it can store and release latent heat energy at a specific temperature range.
  • 534
  • 12 Oct 2022
Topic Review
Nanocellulose Nanomorphologies
Nanocellulosic materials have attracted special attention because of their performance in different advanced applications, biodegradability, availability, and biocompatibility. Nanocellulosic materials can assume three distinct morphologies, including cellulose nanocrystals (CNC), cellulose nanofibers (CNF), and bacterial cellulose (BC). 
  • 527
  • 17 May 2023
Topic Review
Invasive Alien Plant Species in European Paper Production
Invasive plant species can impede the establishment and growth of native plants and affect several ecosystem properties. These properties include soil cover, nutrient cycling, fire regimes, and hydrology. Controlling invasive plants is therefore a necessary, but usually expensive, step in restoring an ecosystem. The sustainability of materials with an emphasis on the use of local resources plays an important role in the circular economy. The use of alternative fibers from invasive plants promotes local production in smaller paper mills that offer the protection of local species and the reduction of waste and invasive plants.
  • 511
  • 10 Nov 2022
Topic Review
Thermally Modified Wood Exposed to Different Weathering Conditions
Thermally modified wood (TMW) is a material derived from a treatment that combines temperature and moisture, avoiding harmful substances while providing better energy efficiency and drying quality. Such types of processes can considerably improve the performance of timber in several aspects. The treatment is usually achieved at temperatures between 120 °C and 260 °C, depending on the industrial process and desired end-product characteristics.
  • 506
  • 19 Oct 2021
Topic Review
Modification and Application of Bamboo-Based Materials
In light of continual societal advancement and escalating energy consumption, the pursuit of green, low-carbon, and environmentally friendly technologies has become pivotal. Bamboo, renowned for its diverse advantages encompassing swift growth, ecological compatibility, robust regenerative properties, commendable mechanical characteristics, heightened hardness, and abundant availability, has discovered applications across various domains, including furniture and construction. Nevertheless, natural bamboo materials are plagued by inherent limitations, prominently featuring suboptimal hydrophobicity and vulnerability to fracture, thereby constraining their broad-scale application. Thus, the paramount concern is to enhance the performance of bamboo materials through modification.
  • 490
  • 16 Nov 2023
Topic Review
Opportunities of Bio-Based Adhesives for Packaging Applications
Global economy depends on fossil resources, which provide raw materials for the production of a range of chemicals and materials for the manufacture of commercial products such as paper and packaging. Since there is growing environmental awareness and the need to reduce dependence on petroleum-based products, the attention has been paid to the possibilities of synthesizing polymeric materials from bio-based renewable resources. The paper and packaging segment dominates the market and is expected to grow further during the forecast period due to robust growth in demand for packaging materials from food and beverage manufacturers and e-retail companies. In the paper industry, biomass, such as wood and other species, is undergoing constant change due to countries' efforts to decarbonize, the rise of bio-based materials, and so on. The recent shortage of paper for various media, due to the shift from fiber to packaging applications, opens the space for alternative solutions. Recently, interest in the use of agricultural residues has increased. Environmentally friendly packaging, so called green packaging, based on biodegradable, recyclable or compostable materials, is currently attracting a great deal of attention in many disciplines because of its unique properties compared to traditional petrochemical-based plastics. Green packaging materials play an important role in preserving and protecting the product. To fulfil these benefits, the bio-based material for green packaging should be made from materials that enhance the biopolymer properties of the packaging material and meet the requirements of the global market. In addition, to ensure the recyclability or biodegradability of the above packaging, bio-based adhesives should be included in the packaging process. Lately, the adhesive production is still based on by-products of petroleum processing and with increasing concerns about environmental threats and sustainable development, the use of biomass and bio-based materials will play an important role.
  • 451
  • 30 Mar 2023
Topic Review
Green Substrates for Flexible Electronics for IoT
The Internet of Things (IoT) is gaining more and more popularity and it is establishing itself in all areas, from industry to everyday life. Given its pervasiveness and considering the problems that afflict today’s world, that must be carefully monitored and addressed to guarantee a future for the new generations, the sustainability of technological solutions must be a focal point in the activities of researchers in the field. Many of these solutions are based on flexible, printed or wearable electronics. The choice of materials therefore becomes fundamental, just as it is crucial to provide the necessary power supply in a green way.
  • 432
  • 26 Jun 2023
  • Page
  • of
  • 4