Topic Review
1769 Transit of Venus Observed from Tahiti
On June 3, 1769, British navigator Captain James Cook, British naturalist Joseph Banks, British astronomer Charles Green and Swedish naturalist Daniel Solander recorded the transit of Venus on the island of Tahiti during Cook's first voyage around the world. During a transit, Venus appears as a small black disc travelling across the Sun. This unusual astronomical phenomenon takes place in a pattern that repeats itself every 243 years. It includes two transits that are eight years apart, separated by breaks of 121.5 and 105.5 years. These men, along with a crew of scientists, were commissioned by the Royal Society of London for the primary purpose of viewing the transit of Venus. Not only would their findings help expand scientific knowledge, it would help with navigation by accurately calculating the observer's longitude. At this time, longitude was difficult to determine and not always precise. A "secret" mission that followed the transit included the exploration of the South Pacific to find the legendary Terra Australis Incognita or "unknown land of the South."
  • 17
  • 30 Sep 2022
Topic Review
Two-dimensional (2D) materials are generally defined as crystalline substances with a few atoms thickness.Two-dimensional transition metal dichalcogenide (2D-TMDs) semiconducting (SC) materials have exhibited unique optical and electrical properties. The layered configuration of the 2D-TMDs materials is at the origin of their strong interaction with light and the relatively high mobility of their charge carriers, which in turn prompted their use in many optoelectronic applications, such as ultra-thin field-effect transistors, photo-detectors, light emitting diode, and solar-cells. Generally, 2D-TMDs form a family of graphite-like layered thin semiconducting structures with the chemical formula of MX2, where M refers to a transition metal atom (Mo, W, etc.) and X is a chalcogen atom (Se, S, etc.). The layered nature of this class of 2D materials induces a strong anisotropy in their electrical, chemical, mechanical, and thermal properties. In particular, molybdenum disulfide (MoS2) is the most studied layered 2D-TMD.
  • 1046
  • 28 Sep 2021
Topic Review
3D Live Cell Imaging Challenges
Relevant samples are described and various problems and challenges—including 3D Challenges of 3D imaging by optical sectioning, light scattering and phototoxicity—are addressed. Furthermore, enhanced methods of wide-field or laser scanning microscopy together with some relevant examples and applications are summarized. In the future one may profit from a continuous increase in microscopic resolution, but also from molecular sensing techniques in the nanometer range using e.g., non-radiative energy transfer (FRET).
  • 240
  • 23 Aug 2021
Topic Review
3D Printed Electromagnetic Vibration Harvesters
Energy harvesting is the utilisation of ambient energy in order to power electronics such as wireless sensor nodes (WSN) or wearables without the need of batteries. This allows to operate the node over a much longer time period compared to battery-powered devices along with lower maintenance efforts. Furthermore, the low-maintenance requirements allow to operate these WSNs in environments with limited or no accessibility.
  • 296
  • 05 Nov 2021
Topic Review
3D-Printed Silica Glass
Glass technologies for 3D printing can be divided into several categories according to the printing method and the form of pre-treatment for the raw materials. These categories include powder-based, photopolymerization-based, and material extrusion-based 3D printing technology. Among them, fused deposition modeling (FDM), based on material extrusion (MEX), and selective laser sintering/melting (SLS/SLM), based on powder, usually require strict processing conditions and are therefore less suitable for laboratory processing. The most promising processing technologies are stereolithography (SLA), digital light processing (DLP), two-photon polymerization (TPP), sheet lamination (SL), which is based on photopolymerization, and DIW, based on MEX.
  • 251
  • 28 Feb 2022
Topic Review
A discrete quantum momentum operator
We introduce finite-differences derivatives intended to be exact when applied to the real exponential function. We want to recover the known results of continuous calculus with our finite differences derivatives but in a discrete form. The purpose of this work is to have a discrete momentum operator suitable for use as an operator in discrete quantum mechanics theory.
  • 790
  • 24 Aug 2021
Topic Review
A Specialty Fiber for Distributed Acoustic Sensing Technology
Specialty fibers have introduced new levels of flexibility and variability in distributed fiber sensing applications. In particular, distributed acoustic sensing (DAS) systems utilized the unique functions of specialty fibers to achieve performance enhancements in various distributed sensing applications. 
  • 173
  • 28 Apr 2022
Topic Review
Acoustic Emission Spectroscopy
Acoustic emission (AE) spectroscopy has become the method of choice in many fieldsbecause it is highly sensitive. For example, the AE system constructed by the Vallen company, Germany, has a sampling rate that can reach up to 10 MHz, an arrival time resolution of 100 ns, and an energy resolution of 1.8 × 10−18V2s (i.e., in the attojoule regime, aJ) referred to sensor signal at 34 dB preamplifier gain.
  • 257
  • 28 Oct 2021
Topic Review
Acoustic Metamaterials in Aeronautics
Metamaterials, man-made composites that are scaled smaller than the wavelength, have demonstrated a huge potential for application in acoustics, allowing the production of sub-wavelength acoustic absorbers, acoustic invisibility, perfect acoustic mirrors and acoustic lenses for hyper focusing, and acoustic illusions and enabling new degrees of freedom in the control of the acoustic field. The zero, or even negative, refractive sound index of metamaterials offers possibilities for the control of acoustic patterns and sound at sub-wavelength scales. The potential of metamaterial-based technologies has recently caught the interest of the aeronautics community. Their effect in the presence of realistic flows in the surrounding domains, with boundary layer, turbulence, is currently a hot research topic. The interaction with flow requires a careful design of the metamaterial to avoid detrimental effects and enabling the device maximum capabilities in aeronautics.
  • 327
  • 25 Jun 2021
Topic Review
Acoustic Properties of Natural-fiber-based Composites
Recent advancement in controlling noise through sound absorption provides an opportunity to investigate various porous materials including fiber-based composites. Natural-fiber-based composites exhibit relatively good sound absorption capability due to their porous structure. Surface modification by alkali treatment can enhance the sound absorption performance. These materials can be used in buildings and interiors for efficient sound insulation. Natural-fiber-based composites have advantages such as high abrasive resistance, low emission of toxic fumes with heat, high specific strength, light weight, low cost, and eco-friendliness. Very rapid growth has been observed in the innovations and use of natural-fiber-based materials and composites for acoustic applications.
  • 670
  • 24 Aug 2021
  • Page
  • of
  • 36