Topic Review
RESOLFT
RESOLFT, an acronym for REversible Saturable OpticaL Fluorescence Transitions, denotes a group of optical fluorescence microscopy techniques with very high resolution. Using standard far field visible light optics a resolution far below the diffraction limit down to molecular scales can be obtained. With conventional microscopy techniques, it is not possible to distinguish features that are located at distances less than about half the wavelength used (i.e. about 200 nm for visible light). This diffraction limit is based on the wave nature of light. In conventional microscopes the limit is determined by the used wavelength and the numerical aperture of the optical system. The RESOLFT concept surmounts this limit by temporarily switching the molecules to a state in which they cannot send a (fluorescence-) signal upon illumination. This concept is different from for example electron microscopy where instead the used wavelength is much smaller.
  • 498
  • 25 Nov 2022
Biography
Heinrich Rubens
Heinrich Rubens (30 March 1865, Wiesbaden, Nassau, Germany – 17 July 1922, Berlin, Germany) was a German physicist. He is known for his measurements of the energy of black-body radiation which led Max Planck to the discovery of his radiation law. This was the genesis of quantum theory. After having attended realgymnasium Wöhlerschule in Frankfurt am Main, he started in 1884 to study electric
  • 498
  • 09 Dec 2022
Topic Review
High-Throughput Screening Methods for Radiosensitivity and Resistance
The biological impact of ionizing radiation (IR) on humans depends not only on the physical properties and absorbed dose of radiation but also on the unique susceptibility of the exposed individual. A critical target of IR is DNA, and the DNA damage response is a safeguard mechanism for maintaining genomic integrity in response to the induced cellular stress. Unrepaired DNA lesions lead to various mutations, contributing to adverse health effects.
  • 498
  • 19 Aug 2022
Topic Review
Impact of Nanostructured Silicon on Thermoelectric Performance
Nanostructured materials remarkably improve the overall properties of thermoelectric devices, mainly due to the increase in the surface-to-volume ratio. This behavior is attributed to an increased number of scattered phonons at the interfaces and boundaries of the nanostructures. Among many other materials, nanostructured Si was used to expand the power generation compared to bulk crystalline Si, which leads to a reduction in thermal conductivity. However, the use of nanostructured Si leads to a reduction in the electrical conductivity due to the formation of low dimensional features in the heavily doped Si regions. Accordingly, the fabrication of hybrid nanostructures based on nanostructured Si and other different nanostructured materials constitutes another strategy to combine a reduction in the thermal conductivity while keeping the good electrical conduction properties. 
  • 497
  • 08 Aug 2022
Topic Review
Formation of All-Silk Composites and Time–Temperature Superposition
Extensive studies have been conducted on utilising natural fibres as reinforcement in composite production. All-polymer composites have attracted much attention because of their high strength, enhanced interfacial bonding and recyclability. Silks, as a group of natural animal fibres, possess superior properties, including biocompatibility, tunability and biodegradability. This makes them promising candidates for application as a new composite material. Understanding both the applications and fundamental behaviours of silk fibroin is essential. This can be achieved with techniques like time-temperature superposition to understand the effects of dissolution on raw silk fibres.
  • 497
  • 30 May 2023
Topic Review
Odd Radio Circles and Their Environment
Odd Radio Circles (ORCs) are unexpected faint circles of diffuse radio emission discovered in recent wide deep radio surveys. They are typically about one arcmin in diameter, and may be spherical shells of synchrotron emission about a million light years in diameter, surrounding galaxies at a redshift of ∼0.2–0.6. Here we study the properties and environment of the known ORCs.
  • 497
  • 17 Nov 2021
Topic Review
Soft Templates for Fabricating 3D Nanostructures
Just like rigid templates, there are numerous types of soft templates, including electron resist polymer, photoresist polymer, and various assembled polymers consisting of block polymer, fiber or membrane, polystyrene (PS) sphere, and so forth. These versatile soft templates can be used in the ALA method and have broad prospects for development in powerful fabrication of multiple nanostructures, which possess a lot of advantages, such as simple process, good flexibility, repeatable simplicity of the process, and environmentally friendly easy elimination of the templates, resulting in diversiform 3D nanostructures with numerous device applications.
  • 497
  • 21 Jun 2022
Topic Review
Treatment of Posthemorrhagic Ventricular Dilatation
Volpe IV is defined as intraventricular hemorrhage combined with venous infarction) and probably lead to posthemorrhagic ventricular dilatation (PHVD). Severe IVH and subsequent PHVD have become the leading causes of brain injury and neurodevelopmental dysplasia in preterm infants. Researchers reviewed the literature on the diagnosis and therapeutic strategies for PHVD and provide some recommendations for management to improve the neurological outcomes.
  • 497
  • 03 Feb 2023
Topic Review Peer Reviewed
Integrated Fabry–Perot Cavities: A Quantum Leap in Technology
Integrated Fabry–Perot cavities (IFPCs), often referred to as nanobeams due to their form factor and size, have profoundly modified the landscape of integrated photonics as a new building block for classical and quantum engineering. In this entry, the main properties of IFPCs will be summarized from the classical and quantum point of view. The classical will provide some of the main results obtained in the last decade, whereas the quantum point of view will exp
  • 498
  • 29 Mar 2024
Topic Review
Bragg Grating Structures Based on a Semiconductor Platform
Optical waveguides (WGs), in the traditional sense, are translucent geometries with a refractive index difference that directs optical beams via total internal reflection. A Bragg grating (BG) structure is a regular WG with periodic refractive index (RI) variations running across it.
  • 496
  • 11 Jul 2022
  • Page
  • of
  • 131
ScholarVision Creations