Topic Review
Chromatin Architecture and Damage Response
DNA double-strand breaks (DSBs) have been recognized as the most serious lesions in irradiated cells. While several biochemical pathways capable of repairing these lesions have been identified, the mechanisms by which cells select a specific pathway for activation at a given DSB site remain poorly understood. The impact of chromatin and repair foci architecture on these mechanisms can be elucidated by super-resolution microscopy in combination with mathematical approaches of topology. These aspects are discussed in relation to state of the art knowledge of ionizing radiation induced damaging of cell nuclei and DNA repair.
  • 594
  • 20 Feb 2021
Topic Review
The Resistive Barrier Discharge
Plasma generated by the resistive barrier discharge has been used to efficiently inactivate pathogenic microorganisms and to destroy cancer cells. These biomedical applications of low temperature plasma are of great interest because in recent times bacteria developed increased resistance to antibiotics and because present cancer therapies often are accompanied by serious side effects. Low temperature plasma, such the one generated by the resistive barrier discharge, is a technology that can help overcome these healthcare challenges.
  • 1.2K
  • 08 Feb 2021
Topic Review
Vibrational Spectroscopy
Vibrational spectroscopy, as a label-free, non-invasive and non-destructive analytical technique, is a valuable technique which can provide detailed biochemical fingerprint information, based on the structure of the molecular constituents, for analysis of cells, tissues, and body fluids.
  • 1.0K
  • 05 Feb 2021
Topic Review
Thermodynamic Dissipation Theory of Life
The Thermodynamic Dissipation Theory of the Origin and Evolution of Life argues that the escence of the origin of life was the microscopic dissipative structuring under UVC light of organic pigments (now known as the fundamental molecules of life - those common to all three domains) and their proliferation over the entire Earth surface, driven by the thermodynamic imperative of dissipating this part of the Archean solar spectrum into heat. With time, dissipative structuring led to ever more complex biosynthetic pathways for creating pigments and their support structures (and processes) which could dissipate not only the UVC region but also other UV regions and the visible wavelengths, until today reaching the "red edge" (at approximately 700 nm). The heat of dissipation of photons absorbed on organic pigments in water then catalyzes a host of coupled secondary dissipative processes such as; the water cycle, ocean and wind currents, hurricanes, etc. pushing the limit for dissipation of the incident light even further towards the infrared. The thermodynamic dissipation theory thus assgins an explicit thermodynamic function to life; the dissipative structuring, proliferation, and evolution of molecular pigments and their complexes from common precursor carbon based molecules under the impressed short wavelength solar photon potential to perform the explicit thermodynamic function of dissipating this light into long wavelength infrared light (heat). In a general sense, the origin of life is no different than the origin of other dissipative structuring processes like hurricanes and the water cycle, except that these latter processes deal with structuring involving hydrogen bonding while life deals with structuring involving covalent bonding. The external photon potential supplied continuously by the environment (our Sun), and its dissipation into heat by the assembly of dissipative structures, are, therefore, both integral components necessary for understanding life. Difficult problems related to the origin of life, such as enzyme-less replication of RNA and DNA, homochirality of the fundamental molecules, and the origin of amino acid -codon assignments (information encoding in RNA and DNA), also find simple explanations within this same dissipative thermodynamic framework once the existence of a relation between primordial RNA and DNA replication and UV-C photon dissipation is established.
  • 3.0K
  • 04 Feb 2021
Topic Review
Quantum Reinforcement Learning
Quantum machine learning has emerged as a promising paradigm that could accelerate machine learning calculations. Inside this field, quantum reinforcement learning aims at designing and building quantum agents that may exchange information with their environment and adapt to it, with the aim of achieving some goal. Different quantum platforms have been considered for quantum machine learning and specifically for quantum reinforcement learning. Here, we review the field of quantum reinforcement learning and its implementation with quantum platforms. This quantum technology may enhance quantum computation and communication, as well as machine learning, via the fruitful marriage between these previously unrelated fields. 
  • 2.5K
  • 03 Feb 2021
Topic Review
Immersive Virtual Reality
Immersive Virtual Reality (IVR) is a simulated technology used to deliver multisensory information to people under different environmental conditions. When IVR is generally applied in urban planning and soundscape research, it reveals attractive possibilities for the assessment of urban sound environments with higher immersion for human participation. In virtual sound environments, various topics and measures are designed to collect subjective responses from participants under simulated laboratory conditions. Soundscape or noise assessment studies during virtual experiences adopt an evaluation approach similar to in situ methods. 
  • 1.3K
  • 02 Feb 2021
Topic Review
Exercise and Cartilage Regeneration Therapy
In response to exercise, articular chondrocytes increase their production of glycosaminoglycans, bone morphogenic proteins, and anti-inflammatory cytokines and decrease their production of proinflammatory cytokines and matrix-degrading metalloproteinases. These changes are associated with improvements in cartilage organization and reductions in cartilage degeneration. Studies in humans indicate that exercise enhances joint recruitment of bone marrow-derived mesenchymal stem cells and upregulates their expression of osteogenic and chondrogenic genes, osteogenic microRNAs, and osteogenic growth factors. Rodent experiments demonstrate that exercise enhances the osteogenic potential of bone marrow-derived mesenchymal stem cells while diminishing their adipogenic potential, and that exercise done after stem cell implantation may benefit stem cell transplant viability. Physical exercise also exerts a beneficial effect on the skeletal system by decreasing immune cell production of osteoclastogenic cytokines interleukin-1β, tumor necrosis factor-α, and interferon-γ, while increasing their production of antiosteoclastogenic cytokines interleukin-10 and transforming growth factor-β.
  • 2.2K
  • 28 Jan 2021
Topic Review
Closed Timelike Curves
Closed timelike curves (CTCs) are space-time trajectories that return to their starting point without violating the laws of special relativity. A traveler along a CTC could journey into the future but arrive in its past, creating a possible violation of the principle of causality. Such CTCs occur in Gödel’s rotating universe and many other general relativistic solutions of classical Einstein’s field equations. The chronological protection conjecture suggests that Nature forbids this kind of situation.
  • 9.7K
  • 27 Jan 2021
Topic Review
Polarization Holography
Polarization holography has the unique capacity to record and retrieve the amplitude, phase, and polarization of light simultaneously in a polarization-sensitive recording material and has attracted widespread attention. Polarization holography is a noteworthy technology with potential applications in the fields of high-capacity data storage, polarization-controlled optical elements, and other related fields.
  • 2.2K
  • 23 Jan 2021
Topic Review
Cosmic-ray Sources - Black Holes
Cosmic rays were discovered over one hundred years ago but there are still unsolved problems. One of the hot problems is the origin of cosmic rays of the highest energies. Sources are still unclear and it is neither clear how particles gain ultra-high energies. Possible sources of cosmic rays at the highest energies are supermassive black holes. From this perspective we discuss in a popular form some recent developments in cosmic ray studies along with author’s recent results.The paper also offers materials for further reading.
  • 959
  • 21 Jan 2021
  • Page
  • of
  • 131
ScholarVision Creations