Biography
Bruno Augenstein
Bruno Wilhelm Augenstein (March 16, 1923 – July 6, 2005) was a Germany -born mathematician and physicist who made important contributions in space technology, ballistic missile research, satellites, antimatter, and many other areas. Augenstein worked in the Aerophysics Laboratory at North American Aviation on diverse projects including weaponization of the V-2 rocket, a ramjet-powered vehic
  • 415
  • 09 Dec 2022
Topic Review
Broken/Asymptotic Safety in Quantum Gravity
Asymptotic safety (sometimes also referred to as nonperturbative renormalizability) is a concept in quantum field theory which aims at finding a consistent and predictive quantum theory of the gravitational field. Its key ingredient is a nontrivial fixed point of the theory's renormalization group flow which controls the behavior of the coupling constants in the ultraviolet (UV) regime and renders physical quantities safe from divergences. Although originally proposed by Steven Weinberg to find a theory of quantum gravity, the idea of a nontrivial fixed point providing a possible UV completion can be applied also to other field theories, in particular to perturbatively nonrenormalizable ones. In this respect, it is similar to quantum triviality. The essence of asymptotic safety is the observation that nontrivial renormalization group fixed points can be used to generalize the procedure of perturbative renormalization. In an asymptotically safe theory the couplings do not need to be small or tend to zero in the high energy limit but rather tend to finite values: they approach a nontrivial UV fixed point. The running of the coupling constants, i.e. their scale dependence described by the renormalization group (RG), is thus special in its UV limit in the sense that all their dimensionless combinations remain finite. This suffices to avoid unphysical divergences, e.g. in scattering amplitudes. The requirement of a UV fixed point restricts the form of the bare action and the values of the bare coupling constants, which become predictions of the asymptotic safety program rather than inputs. As for gravity, the standard procedure of perturbative renormalization fails since Newton's constant, the relevant expansion parameter, has negative mass dimension rendering general relativity perturbatively nonrenormalizable. This has driven the search for nonperturbative frameworks describing quantum gravity, including asymptotic safety which — in contrast to other approaches—is characterized by its use of quantum field theory methods, without depending on perturbative techniques, however. At the present time, there is accumulating evidence for a fixed point suitable for asymptotic safety, while a rigorous proof of its existence is still lacking.
  • 328
  • 19 Oct 2022
Topic Review
Broken/Astronomy
Astronomy (from Greek: ἀστρονομία) is a natural science that studies celestial objects and phenomena. It applies mathematics, physics, and chemistry in an effort to explain the origin of those objects and phenomena and their evolution. Objects of interest include planets, moons, stars, nebulae, galaxies, and comets; the phenomena also includes supernova explosions, gamma ray bursts, quasars, blazars, pulsars, and cosmic microwave background radiation. More generally, all phenomena that originate outside Earth's atmosphere are within the purview of astronomy. A branch of astronomy called cosmology is the study of the Universe as a whole. Astronomy is one of the oldest of the natural sciences. The early civilizations in recorded history, such as the Babylonians, Greeks, Indians, Egyptians, Nubians, Iranians, Chinese, Maya, and many ancient indigenous peoples of the Americas, performed methodical observations of the night sky. Historically, astronomy has included disciplines as diverse as astrometry, celestial navigation, observational astronomy, and the making of calendars, but professional astronomy is now often considered to be synonymous with astrophysics. Professional astronomy is split into observational and theoretical branches. Observational astronomy is focused on acquiring data from observations of astronomical objects, which is then analyzed using basic principles of physics. Theoretical astronomy is oriented toward the development of computer or analytical models to describe astronomical objects and phenomena. The two fields complement each other, with theoretical astronomy seeking to explain observational results and observations being used to confirm theoretical results. Astronomy is one of the few sciences in which amateurs still play an active role, especially in the discovery and observation of transient events. Amateur astronomers have made and contributed to many important astronomical discoveries, such as finding new comets.
  • 824
  • 22 Nov 2022
Topic Review
Brite-Constellation
BRITE-Constellation is devoted to high-precision optical photometric monitoring of bright stars, distributed all over the Milky Way, in red and/or blue passbands. Photometry from space avoids the turbulent and absorbing terrestrial atmosphere and allows for very long and continuous observing runs with high time resolution and thus provides the data necessary for understanding various processes inside stars (e.g., asteroseismology) and in their immediate environment. 
  • 1.0K
  • 15 Jul 2021
Topic Review
Brief History of Gel Dosimetry
Advances in radiotherapy technology have significantly improved both dose conformation to tumors and the preservation of healthy tissues, achieving almost real-time feedback by means of high-precision treatments and theranostics. Therefore, developing high-performance systems capable of coping with the challenging requirements of modern ionizing radiation is a key issue to overcome the limitations of traditional dosimeters. In this regard, a deep understanding of the physicochemical basis of gel dosimetry, as one of the most promising tools for the evaluation of 3D high-spatial-resolution dose distributions, represents the starting point for developing new and innovative systems. 
  • 474
  • 02 Nov 2022
Topic Review
Bṛhaspati
Bṛhaspati (Sanskrit: बृहस्पति; meaning spati of briha, the spirit of vastness of the universe written as Brihaspati) is an Indian name, and refers to different mythical figures depending on the age of the text. In ancient Hindu literature Brihaspati is a Vedic era sage who counsels the gods, while in some medieval texts the word refers to the largest planet of the solar system, Jupiter. He taught Bhishma the duties of a king which he later taught it to Vidura.
  • 4.0K
  • 18 Oct 2022
Topic Review
Breath Analysis for Disease Diagnosis
Early-stage disease diagnosis is of particular importance for effective patient identification as well as their treatment. Lack of patient compliance for the existing diagnostic methods, however, limits prompt diagnosis, rendering the development of non-invasive diagnostic tools mandatory. One of the most promising non-invasive diagnostic methods that has also attracted great research interest is breath analysis; the method detects gas-analytes such as exhaled volatile organic compounds (VOCs) and inorganic gases that are considered to be important biomarkers for various disease-types. The diagnostic ability of gas-pattern detection using analytical techniques and especially sensors has been widely discussed in the literature; however, the incorporation of novel nanomaterials in sensor-development has also proved to enhance sensor performance, for both selective and cross-reactive applications.
  • 954
  • 27 Jul 2023
Topic Review
Bragg Grating Structures Based on a Semiconductor Platform
Optical waveguides (WGs), in the traditional sense, are translucent geometries with a refractive index difference that directs optical beams via total internal reflection. A Bragg grating (BG) structure is a regular WG with periodic refractive index (RI) variations running across it.
  • 496
  • 11 Jul 2022
Topic Review
Bragg Grating External Cavity Semiconductor Lasers
External cavity semiconductor lasers (ECSLs) usually refer to the gain chip based on the introduction of external optical components (such as waveguides, gratings, prisms, etc.) to provide optical feedback. By designing the type, position and structure of external optical components, the optical properties of SLs (such as center wavelength, linewidth, tuning range, side-mode suppression ratio (SMSR), etc.) can be changed. Bragg grating external cavity semiconductor laser (BG-ECSL) is a device with a specific optical element (Bragg grating) in the external cavity. BG-ECSLs have excellent performances, such as narrow linewidth, tunability and high SMSR. They are widely used in WDM systems, coherent optical communication, gas detection, Lidar, atomic physics and other fields. 
  • 779
  • 09 Dec 2022
Topic Review
Bow Shocks in Astrophysics
Bow shocks form the boundary between a magnetosphere and an ambient (or at least surrounding) magnetized medium. This occurs when the magnetic field of an astrophysical object interacts with the nearby flowing ambient plasma. For example, when the solar wind, flowing with a relative speed of order 400 km/s, encounters the magnetic field of Earth, a bow shape boundary forms. For Earth and other magnetized planets, it is the boundary at which the speed of the stellar wind abruptly drops as a result of its approach to the magnetopause. For stars, this boundary is typically the edge of the astrosphere, where the stellar wind meets the interstellar medium.
  • 1.7K
  • 27 Oct 2022
  • Page
  • of
  • 131
ScholarVision Creations