Topic Review
First Multi-Cavity Haloscopes in RADES
The first multi-cavity haloscopes for detection of dark matter axion in the RADES collaboration.
  • 398
  • 18 Jan 2022
Topic Review
MEMS-Based Tunable Metamaterials
Micro-electro-mechanical systems (MEMS) is a well-known technology that mechanically reconfigures the metamaterial unit cells.
  • 919
  • 18 Jan 2022
Topic Review
Repair of HSGc-C5 Carcinoma Cell Using Geant4-DNA
To evaluate the repair performance of HSGc-C5 carcinoma cell against radiation-induced DNA damage, a Geant4-DNA application for radiobiological research was extended by using newly measured experimental data acquired.
  • 421
  • 17 Jan 2022
Topic Review
Fouling Prevention in Membranes by Radiation-Induced Graft Copolymerization
The application of membrane processes in various fields has now undergone accelerated developments, despite the presence of some hurdles impacting the process efficiency. Fouling is arguably the main hindrance for a wider implementation of polymeric membranes, particularly in pressure-driven membrane processes, causing higher costs of energy, operation, and maintenance. Radiation induced graft copolymerization (RIGC) is a powerful versatile technique for covalently imparting selected chemical functionalities to membranes’ surfaces, providing a potential solution to fouling problems. 
  • 912
  • 17 Jan 2022
Topic Review
GaN-Based Resonant-Cavity Light-Emitting Diodes Grown on Si
GaN-on-Si resonant-cavity light-emitting diodes (RCLEDs) have been successfully fabricated through wafer bonding and Si substrate removal. 
  • 489
  • 17 Jan 2022
Topic Review
Bulk and Single Crystal Growth Progress of FBS
The new iron-based superconductor (FBS) has generated enormous interest in this direction, and many research activities are currently going on with various kinds of FBS. FBS was discovered in 2008 through F doped LaFeAsO, which crystallizes with a tetragonal layered ZrCuSiAs structure, and after that, many compounds have been discovered, most of which display superconductivity through suitable doping. FBS became the second high-Tc-superconducting family after cuprate superconductors and has been the subject of extensive research into their physical nature and application potential.
  • 704
  • 14 Jan 2022
Topic Review
Radiolabeled Gold Nanoseeds and Glioblastoma Multiforme
Glioblastoma multiforme (GBM), classified as a grade IV brain tumor, represents the most frequent brain tumor, accounting for approximately 12–15% of all intracranial neoplasms. Current therapeutic strategies for GBM rely on open surgery, chemotherapy and radiotherapy. Despite some progress in the past 30 years, the overall survival of patients with glioblastoma remains extremely poor. The average lifespan is approximately 15 months after diagnosis, with most patients experiencing tumor relapse and outgrowth within 7–10 months of initial radiation therapy.
  • 633
  • 14 Jan 2022
Topic Review
The Crab Nebula in Gamma-Rays
The Crab nebula is one of the best studied objects in the sky, second only to the Sun. It is the remnant of a supernova explosion occurred in A. D. 1054, and it represents the prototype of an entire class of supernova remnants: Pulsar Wind Nebulae. It consists of two different bright non-thermal sources — the pulsar and the nebula. Both objects have played a key role in the development of high-energy astrophysics. Thanks to their bright emission at all wavelengths, they have been observed by virtually all new astronomical instruments and have been at the origin of a wealth of important scientific discoveries.
  • 625
  • 13 Jan 2022
Topic Review
Stellar Chromospheric Variability
Chromospheric (magnetic) activity is evidence of the presence of strong and variable magnetic fields. Magnetically active chromospheres are predominantly found in cool stars with convective envelopes of spectral types F and later. Day- to year-long variability is associated with the evolution and rotational modulation of individual magnetically active regions.
  • 1.0K
  • 12 Jan 2022
Topic Review
Intermetallic Quasicrystals
A quasicrystal is the natural extension of the notion of a crystal to structures with quasiperiodic, rather than periodic, translational order. Intermetallic quasicrystals are a class of quasiperiodically ordered solids made of typical metallic atoms, though they do not exhibit the physical properties that usually signal the presence of metallic bonding, and their electrical and thermal transport properties resemble a more semiconductor-like than metallic character. The distribution of atoms throughout the space in these compounds exhibits a characteristic self-similar, scale invariant symmetry, based on a hierarchy of nested atomic clusters.
  • 553
  • 10 Jan 2022
  • Page
  • of
  • 131
ScholarVision Creations