Topic Review
Materials Science, Glasses
Glasses are solid amorphous materials which transform into liquids upon heating through the glass transition. The International Commission on Glass defines glass as a state of matter, usually produced when a viscous molten material is cooled rapidly to below its glass transition temperature, with insufficient time for a regular crystal lattice to form. The solid-like behaviour of glasses is separated from the liquid-like behaviour at higher temperatures by the glass transition temperature, Tg. The IUPAC Compendium on Chemical Terminology defines glass transition as a second order transition in which a supercooled melt yields, on cooling, a glassy structure. It states that below the glass-transition temperature the physical properties of glasses vary in a manner similar to those of the crystalline phase. Moreover, it is deemed that the bonding structure of glasses has the same symmetry signature in terms of Hausdorff-Besikovitch dimensionality of chemical bonds as for the crystalline materials. 
  • 3.2K
  • 09 May 2024
Topic Review
Red Supergiant Star
Red supergiants (RSGs) are stars with a supergiant luminosity class (Yerkes class I) of spectral type K or M. They are the largest stars in the universe in terms of volume, although they are not the most massive or luminous. Betelgeuse and Antares are the brightest and best known red supergiants (RSGs), indeed the only first magnitude red supergiant stars.
  • 3.2K
  • 18 Nov 2022
Topic Review
SpaceX Mars Transportation Infrastructure
Elon Musk and SpaceX have proposed the development of Mars transportation infrastructure in order to facilitate the eventual colonization of Mars. The mission architecture includes fully reusable launch vehicles, human-rated spacecraft, on-orbit propellant tankers, rapid-turnaround launch/landing mounts, and local production of rocket fuel on Mars via in situ resource utilization (ISRU). SpaceX's aspirational goal since 2017 has been to land the first humans on Mars by 2024. A key element of the infrastructure is planned to be the SpaceX Starship, a fully reusable space vehicle under development since 2018. To achieve a large payload, the spacecraft would first enter Earth orbit, where it is expected to be refueled before it departs to Mars. After landing on Mars, the spacecraft would be loaded with locally-produced propellants to return to Earth. The expected payload for the Starship/Super Heavy is to inject between 100–150 tonnes (220,000–330,000 lb) to Mars. SpaceX intends to concentrate its resources on the transportation part of the Mars colonization project, including the design of a propellant plant based on the Sabatier process that will be deployed on Mars to synthesize methane and liquid oxygen as rocket propellants from the local supply of atmospheric carbon dioxide and ground-accessible water ice. However, Musk has advocated since 2016 a larger set of long-term Mars settlement objectives, going far beyond what SpaceX projects to build; any successful colonization would ultimately involve many more economic actors—whether individuals, companies, or governments—to facilitate the growth of the human presence on Mars over many decades.
  • 3.2K
  • 21 Nov 2022
Topic Review
Strain Rate Tensor
In continuum mechanics, the strain rate tensor is a physical quantity that describes the rate of change of the deformation of a material in the neighborhood of a certain point, at a certain moment of time. It can be defined as the derivative of the strain tensor with respect to time, or as the symmetric component of the gradient (derivative with respect to position) of the flow velocity. The strain rate tensor is a purely kinematic concept that describes the macroscopic motion of the material. Therefore, it does not depend on the nature of the material, or on the forces and stresses that may be acting on it; and it applies to any continuous medium, whether solid, liquid or gas. On the other hand, for any fluid except superfluids, any gradual change in its deformation (i.e. a non-zero strain rate tensor) gives rise to viscous forces in its interior, due to friction between adjacent fluid elements, that tend to oppose that change. At any point in the fluid, these stresses can be described by a viscous stress tensor that is, almost always, completely determined by the strain rate tensor and by certain intrinsic properties of the fluid at that point. Viscous stress also occur in solids, in addition to the elastic stress observed in static deformation; when it is too large to be ignored, the material is said to be viscoelastic.
  • 3.2K
  • 02 Dec 2022
Topic Review
Sociology of Space
The sociology of space is a sub-discipline of sociology that mostly borrows from theories developed within the discipline of geography, including the sub fields of human geography, economic geography, and feminist geography. The "sociology" of space examines the social and material constitution of spaces. It is concerned with understanding the social practices, institutional forces, and material complexity of how humans and spaces interact. The sociology of space is an inter-disciplinary area of study, drawing on various theoretical traditions including Marxism, postcolonialism, and Science and Technology Studies, and overlaps and encompasses theorists with various academic disciplines such as geography and architecture. Edward T. Hall developed the study of Proxemics which concentrates on the empirical analysis of space in psychology.
  • 3.2K
  • 03 Nov 2022
Topic Review
Observer Effect
In physics, the observer effect is the disturbance of an observed system by the act of observation. This is often the result of instruments that, by necessity, alter the state of what they measure in some manner. A common example is checking the pressure in an automobile tire; this is difficult to do without letting out some of the air, thus changing the pressure. Similarly, seeing non-luminous objects requires light hitting the object, and causing it to reflect that light. While the effects of observation are often negligible, the object still experiences a change. This effect can be found in many domains of physics, but can usually be reduced to insignificance by using different instruments or observation techniques. A notable example of the observer effect occurs in quantum mechanics, as demonstrated by the double-slit experiment. Physicists have found that observation of quantum phenomena can change the measured results of this experiment. Despite the "observer effect" in the double-slit experiment being caused by the presence of an electronic detector, the experiment's results have been misinterpreted by some to suggest that a conscious mind can directly affect reality. The need for the "observer" to be conscious is not supported by scientific research, and has been pointed out as a misconception rooted in a poor understanding of the quantum wave function ψ and the quantum measurement process.
  • 3.1K
  • 29 Nov 2022
Topic Review
Gastropoda
The gastropods (/ˈɡæstrəpɒdz/), commonly known as snails and slugs, belong to a large taxonomic class of invertebrates within the phylum Mollusca called Gastropoda (/ɡæsˈtrɒpədə/). This class comprises snails and slugs from saltwater, from freshwater, and from the land. There are many thousands of species of sea snails and slugs, as well as freshwater snails, freshwater limpets, and land snails and slugs. The class Gastropoda contains a vast total of named species, second only to the insects in overall number. The fossil history of this class goes back to the Late Cambrian. (As of 2017), 721 families of gastropods are known, of which 245 are extinct and appear only in the fossil record, while 476 are currently extant with or without a fossil record. Gastropoda (previously known as univalves and sometimes spelled "Gasteropoda") are a major part of the phylum Mollusca, and are the most highly diversified class in the phylum, with 65,000 to 80,000 living snail and slug species. The anatomy, behavior, feeding, and reproductive adaptations of gastropods vary significantly from one clade or group to another, so stating many generalities for all gastropods is difficult. The class Gastropoda has an extraordinary diversification of habitats. Representatives live in gardens, woodland, deserts, and on mountains; in small ditches, great rivers, and lakes; in estuaries, mudflats, the rocky intertidal, the sandy subtidal, the abyssal depths of the oceans, including the hydrothermal vents, and numerous other ecological niches, including parasitic ones. Although the name "snail" can be, and often is, applied to all the members of this class, commonly this word means only those species with an external shell big enough that the soft parts can withdraw completely into it. Those gastropods without a shell, and those with only a very reduced or internal shell, are usually known as slugs; those with a shell into which they can partly but not completely withdraw are termed semislugs. The marine shelled species of gastropods include species such as abalone, conches, periwinkles, whelks, and numerous other sea snails that produce seashells that are coiled in the adult stage—though in some, the coiling may not be very visible, for example in cowries. In a number of families of species, such as all the various limpets, the shell is coiled only in the larval stage, and is a simple conical structure after that.
  • 3.1K
  • 08 Nov 2022
Topic Review
Teleparallel Equivalent of General Relativity
The teleparallel equivalent of general relativity (TEGR) is an alternative geometrical formulation of the relativistic theory of gravitation. A brief description of the  TEGR is presented. The building blocks of the theory and few main achievements are discussed.
  • 3.1K
  • 30 Oct 2020
Topic Review
Applications of Liquid Crystals-Based Sensors
Liquid crystals are a class of chemical substances that exist in intermediate states between crystalline solids and liquids. They thus share the anisotropic properties of crystalline solids as well as fluid properties of isotropic liquids. 
  • 3.1K
  • 23 Mar 2022
Topic Review
Half-Reaction
A half reaction (or half-cell reaction) is either the oxidation or reduction reaction component of a redox reaction. A half reaction is obtained by considering the change in oxidation states of individual substances involved in the redox reaction. Often, the concept of half reactions is used to describe what occurs in an electrochemical cell, such as a Galvanic cell battery. Half reactions can be written to describe both the metal undergoing oxidation (known as the anode) and the metal undergoing reduction (known as the cathode). Half reactions are often used as a method of balancing redox reactions. For oxidation-reduction reactions in acidic conditions, after balancing the atoms and oxidation numbers, one will need to add H+ ions to balance the hydrogen ions in the half reaction. For oxidation-reduction reactions in basic conditions, after balancing the atoms and oxidation numbers, first treat it as an acidic solution and then add OH− ions to balance the H+ ions in the half reactions (which would give H2O).
  • 3.1K
  • 28 Nov 2022
  • Page
  • of
  • 130
Video Production Service