Topic Review
Vibrational Spectroscopy of Linear Molecules
To determine the vibrational spectroscopy of linear molecules, the rotation and vibration of linear molecules are taken into account to predict which vibrational (normal) modes are active in the infrared spectrum and the Raman spectrum.
  • 535
  • 11 Nov 2022
Topic Review
Physical Phenomenology
After a brief digression on the current landscape of theoretical physics and on some open questions pertaining to coherence with experimental results, still to be settled, it is shown that the properties of the deformed Minkowski space lead to a plurality of potential physical phenomena that should occur, provided that the resulting formalisms can be considered as useful models for the description of some aspects of physical reality. 
  • 535
  • 27 Apr 2021
Topic Review
Ion-Mobility Spectrometry
Ion mobility spectrometry (IMS) is an analytical technique used to separate and identify ionized molecules in the gas phase based on their mobility in a carrier buffer gas. Though heavily employed for military or security purposes, such as detecting drugs and explosives, the technique also has many laboratory analytical applications, including the analysis of both small and large biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion-mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. Systems operated at higher pressure (i.e. atmospheric conditions, 1 atm or 1013 hPa) are often accompanied by elevated temperature (above 100 °C), while lower pressure systems (1-20 hPa) do not require heating.
  • 534
  • 30 Nov 2022
Topic Review
(486958) 2014 MU69
(486958) 2014 MU69, previously designated PT1 and 1110113Y, and nicknamed Ultima Thule by the New Horizons team, is a trans-Neptunian object from the Kuiper belt located in the outermost regions of the Solar System. It was discovered by astronomers using the Hubble Space Telescope on 26 June 2014. The irregular shaped classical Kuiper belt object is a suspected contact binary or close binary system and measures approximately 30 kilometers (19 miles) in diameter. In August 2015, this object was selected as the next target for the New Horizons probe shortly after it had visited Pluto. The flyby will occur on 1 January 2019, which will make it the farthest object in the Solar System ever to be visited by a spacecraft. After four course changes in October and November 2015, New Horizons is on course toward 2014 MU69. On 13 March 2018, NASA announced that (486958) 2014 MU69 would receive the nickname Ultima Thule. The decision was based on the results of a public voting campaign. Ultima Thule /ˈθuːliː/, or Ultima for short, serves as an unofficial name for the object until the IAU decides on an official name at some point after the flyby.
  • 534
  • 19 Oct 2022
Topic Review
Nanoflares
A nanoflare is a very small episodic heating event which happens in the corona, the external atmosphere of the Sun. The hypothesis of small impulsive heating events as a possible explanation of the coronal heating was first suggested by Thomas Gold and then later developed and dubbed "nanoflares" by Eugene Parker. According to Parker a nanoflare arises from an event of magnetic reconnection which converts the energy stored in the solar magnetic field into the motion of the plasma. The plasma motion (thought as fluid motion) occurs at length-scales so small that it is soon damped by the turbulence and then by the viscosity. In such a way the energy is quickly converted into heat, and conducted by the free electrons along the magnetic field lines closer to the place where the nanoflare switches on. In order to heat a region of very high X-ray emission, over an area 1" x 1", a nanoflare of 1017 J should happen every 20 seconds, and 1000 nanoflares per second should occur in a large active region of 105 x 105 km2. On the basis of this theory, the emission coming from a big flare could be caused by a series of nanoflares, not observable individually. The nanoflare model has long suffered from a lack of observational evidence. Simulations predict that nanoflares produce a faint, hot (~10 MK) component of the emission measure. Unfortunately, current instruments, such as the Extreme-Ultraviolet Imaging Spectrometer on board Hinode, are not adequately sensitive to the range in which this faint emission occurs, making a confident detection impossible. Recent evidence from the EUNIS sounding rocket has provided some spectral evidence for non-flaring plasma at temperatures near 9 MK in active region cores.
  • 534
  • 30 Nov 2022
Topic Review
Magnetic Force Microscopy on Nanofibers
Magnetic force microscopy is a magnetic characterization method of samples usually with a maximum of a few ten nanometers surface roughness. It works by measuring an atomic force microscopy (AFM) image of the surface topography of a sample, followed by lifting the probe to avoid short-range van der Waals interactions between the tip and sample and instead measuring the long-range magnetic interactions. In addition to this simplest form of magnetic force microscopy (MFM), there are more sophisticated ones, including frequency-modulated Kelvin probe force MFM, dynamic magneto-electric force microscopy, phase-locked loop methods, and even measurements in different environments, e.g., in liquids, that have been shown.
  • 532
  • 10 Nov 2021
Topic Review
Magnetoelectric Magnetic Field Sensors
One of the new materials that have attracted wide attention of researchers are magnetoelectric (ME) composites. Great interest in these materials is due to their properties associated with the transformation of electric polarization/magnetization under the influence of external magnetic/electric fields and the possibility of their use to create new devices. ME magnetic field sensors based on the widely used structures Terfenol—PZT/PMN-PT,Metglas—PZT/PMN-PT, and Metglas—Lithium niobate, among others, are considered as the first applications of the ME effect in technology. Estimates of the parameters of ME sensors are given, and comparative characteristics of magnetic field sensors are presented. Taking into account the high sensitivity of ME magnetic field sensors, comparable to superconducting quantum interferencedevices (SQUIDs), this entry discuss the areas of their application.
  • 532
  • 08 Feb 2023
Topic Review
Near-Earth Object Surveillance Mission
The Near-Earth Object Surveillance Mission (NEOSM), formerly called Near-Earth Object Camera (NEOCam) is a planned space-based infrared telescope designed to survey the Solar System for potentially hazardous asteroids. The NEO Surveillance Mission will be carried out by the NEO Surveyor spacecraft, which will survey from the Sun–Earth L1 (inner) Lagrange point, allowing it to look close to the Sun and see objects inside Earth's orbit. The mission will be a successor to the NEOWISE mission; the principal investigator is also NEOWISE's principal investigator, Amy Mainzer at the University of Arizona. Since first proposed in 2006, the concept unsuccessfully competed repeatedly for NASA funding against science missions unrelated to planetary defense, despite a 2005 US Congressional directive to NASA. In 2019, it was decided to implement this mission by the Planetary Defense Coordination Office since it is a public safety issue. The Jet Propulsion Laboratory will lead development of the mission.
  • 532
  • 05 Dec 2022
Topic Review
CAPSTONE (Spacecraft)
Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE) is a lunar orbiter that will test and verify the calculated orbital stability planned for the Gateway space station. The spacecraft is a 12-unit CubeSat that will also test a navigation system that will measure its position relative to NASA's Lunar Reconnaissance Orbiter (LRO) without relying on ground stations.
  • 532
  • 11 Oct 2022
Topic Review
Surface-Extended X-Ray Absorption Fine Structure
Surface-extended X-ray absorption fine structure (SEXAFS) is the surface-sensitive equivalent of the EXAFS technique. This technique involves the illumination of the sample by high-intensity X-ray beams from a synchrotron and monitoring their photoabsorption by detecting in the intensity of Auger electrons as a function of the incident photon energy. Surface sensitivity is achieved by the interpretation of data depending on the intensity of the Auger electrons (which have an escape depth of ~1–2 nm) instead of looking at the relative absorption of the X-rays as in the parent method, EXAFS. The photon energies are tuned through the characteristic energy for the onset of core level excitation for surface atoms. The core holes thus created can then be filled by nonradiative decay of a higher-lying electron and communication of energy to yet another electron, which can then escape from the surface (Auger emission). The photoabsorption can therefore be monitored by direct detection of these Auger electrons to the total photoelectron yield. The absorption coefficient versus incident photon energy contains oscillations which are due to the interference of the backscattered Auger electrons with the outward propagating waves. The period of this oscillations depends on the type of the backscattering atom and its distance from the central atom. Thus, this technique enables the investigation of interatomic distances for adsorbates and their coordination chemistry. This technique benefits from long range order not being required, which sometimes becomes a limitation in the other conventional techniques like LEED (about 10 nm). This method also largely eliminates the background from the signal. It also benefits because it can probe different species in the sample by just tuning the X-ray photon energy to the absorption edge of that species. Joachim Stöhr played a major role in the initial development of this technique.
  • 531
  • 24 Oct 2022
  • Page
  • of
  • 131
ScholarVision Creations