Topic Review
Kikuchi Lines
Kikuchi lines are patterns of electrons formed by scattering. They pair up to form bands in electron diffraction from single crystal specimens, there to serve as "roads in orientation-space" for microscopists uncertain of what they are looking at. In transmission electron microscopes, they are easily seen in diffraction from regions of the specimen thick enough for multiple scattering. Unlike diffraction spots, which blink on and off as one tilts the crystal, Kikuchi bands mark orientation space with well-defined intersections (called zones or poles) as well as paths connecting one intersection to the next. Experimental and theoretical maps of Kikuchi band geometry, as well as their direct-space analogs e.g. bend contours, electron channeling patterns, and fringe visibility maps are increasingly useful tools in electron microscopy of crystalline and nanocrystalline materials. Because each Kikuchi line is associated with Bragg diffraction from one side of a single set of lattice planes, these lines can be labeled with the same Miller or reciprocal-lattice indices that are used to identify individual diffraction spots. Kikuchi band intersections, or zones, on the other hand are indexed with direct-lattice indices i.e. indices which represent integer multiples of the lattice basis vectors a, b and c. Kikuchi lines are formed in diffraction patterns by diffusely scattered electrons, e.g. as a result of thermal atom vibrations. The main features of their geometry can be deduced from a simple elastic mechanism proposed in 1928 by Seishi Kikuchi, although the dynamical theory of diffuse inelastic scattering is needed to understand them quantitatively. In x-ray scattering, these lines are referred to as Kossel lines (named after Walther Kossel).
  • 1.8K
  • 09 Nov 2022
Topic Review
Kikuchi Line
Kikuchi lines pair up to form bands in electron diffraction from single crystal specimens, there to serve as "roads in orientation-space" for microscopists not certain what they are looking at. In transmission electron microscopes, they are easily seen in diffraction from regions of the specimen thick enough for multiple scattering. Unlike diffraction spots, which blink on and off as one tilts the crystal, Kikuchi bands mark orientation space with well-defined intersections (called zones or poles) as well as paths connecting one intersection to the next. Experimental and theoretical maps of Kikuchi band geometry, as well as their direct-space analogs e.g. bend contours, electron channeling patterns, and fringe visibility maps are increasingly useful tools in electron microscopy of crystalline and nanocrystalline materials. Because each Kikuchi line is associated with Bragg diffraction from one side of a single set of lattice planes, these lines can be labeled with the same Miller or reciprocal-lattice indices that are used to identify individual diffraction spots. Kikuchi band intersections, or zones, on the other hand are indexed with direct-lattice indices i.e. indices which represent integer multiples of the lattice basis vectors a, b and c. Kikuchi lines are formed in diffraction patterns by diffusely scattered electrons, e.g. as a result of thermal atom vibrations. The main features of their geometry can be deduced from a simple elastic mechanism proposed in 1928 by Seishi Kikuchi, although the dynamical theory of diffuse inelastic scattering is needed to understand them quantitatively. In x-ray scattering these lines are referred to as Kossel lines (named after Walther Kossel).
  • 366
  • 18 Nov 2022
Topic Review
KIC 8462852
KIC 8462852 (also Tabby's Star or Boyajian's Star) is an F-type main-sequence star located in the constellation Cygnus approximately 1,470 light-years (450 pc) from Earth. Unusual light fluctuations of the star, including up to a 22% dimming in brightness, were discovered by citizen scientists as part of the Planet Hunters project. In September 2015, astronomers and citizen scientists associated with the project posted a preprint of an article describing the data and possible interpretations. The discovery was made from data collected by the Kepler space telescope, which observes changes in the brightness of distant stars to detect exoplanets. Several hypotheses have been proposed to explain the star's large irregular changes in brightness as measured by its light curve, but none to date fully explain all aspects of the curve. One explanation is that an "uneven ring of dust" orbits KIC 8462852. In another explanation, the star's luminosity is modulated by changes in the efficiency of heat transport to its photosphere, so no external obscuration is required. A third hypothesis, based on a lack of observed infrared light, posits a swarm of cold, dusty comet fragments in a highly eccentric orbit, however, the notion that disturbed comets from such a cloud could exist in high enough numbers to obscure 22% of the star's observed luminosity has been doubted. Another hypothesis is that a large number of small masses in "tight formation" are orbiting the star. Furthermore, spectroscopic study of the system has found no evidence for coalescing material or hot close-in dust or circumstellar matter from an evaporating or exploding planet within a few astronomical units of the mature central star. It has also been hypothesized that the changes in brightness could be signs of activity associated with intelligent extraterrestrial life constructing a Dyson swarm. The scientists involved are very skeptical, however, with others describing it as implausible. KIC 8462852 is not the only star that has large irregular dimmings, but all other such stars are young stellar objects called YSO dippers, which have different dimming patterns. An example of such an object is EPIC 204278916. New light fluctuation events of KIC 8462852 began in the middle of May 2017. Except for a period between late-December 2017 and mid-February 2018 when the star was obscured by the Sun, the fluctuations have continued (As of July 2018).
  • 2.2K
  • 15 Nov 2022
Topic Review
Kepler-86
Kepler-86, PH2 or KIC 12735740 (2MASS 19190326+5157453), is a G-type star 1,130 ly (350 pc) distant within the constellation Cygnus. Roughly the size and temperature of the Sun, PH2 gained prominence when it was known to be the host of one of 42 planet candidates detected by the Planet Hunters citizen science project in its second data release. The candidate orbiting around PH2, known as PH2 b, had been determined to have a spurious detection probability of only 0.08%, thus effectively confirming its existence as a planet. Located in its parent star's habitable zone, PH2 b (or Kepler-86b) is a "Jupiter-size" gas giant which may have a natural satellite suitable for hosting life. The report of the confirmed detection of PH2 b was submitted on January 3, 2013. It was discovered by amateur Pole Rafał Herszkowicz using his laptop and access to the Internet project with data from the Kepler space observatory.
  • 416
  • 24 Oct 2022
Topic Review
Kelvin–Stokes Theorem
The Kelvin–Stokes theorem, named after Lord Kelvin and George Stokes, also known as the Stokes' theorem, the fundamental theorem for curls or simply the curl theorem, is a theorem in vector calculus on [math]\displaystyle{ \mathbb{R}^3 }[/math]. Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. If a vector field [math]\displaystyle{ \mathbf{A} = (P(x, y, z), Q(x, y, z), R(x, y, z)) }[/math] is defined in a region with smooth oriented surface [math]\displaystyle{ \Sigma }[/math] and has first order continuous partial derivatives then: where [math]\displaystyle{ \partial \Sigma }[/math] is boundary of region with smooth surface [math]\displaystyle{ \Sigma }[/math]. The above classical Kelvin-Stokes theorem can be stated in one sentence: The line integral of a vector field over a loop is equal to the flux of its curl through the enclosed surface. The Kelvin–Stokes theorem is a special case of the "generalized Stokes' theorem." In particular, a vector field on [math]\displaystyle{ \mathbb{R}^3 }[/math] can be considered as a 1-form in which case its curl is its exterior derivative, a 2-form.
  • 1.6K
  • 02 Nov 2022
Biography
Karl Wirtz
Karl Eugen Julius Wirtz (24 April 1910 – 12 February 1994) was a German nuclear physicist, born in Cologne. He was arrested by the allied British and American Armed Forces and incarcerated at Farm Hall for six months in 1945 under Operation Epsilon. From 1929 to 1934, Wirtz studied physics, chemistry, and mathematics at the University of Bonn, the Albert Ludwigs University of Freiburg, and
  • 449
  • 08 Dec 2022
Biography
Kameshwar C. Wali
Kameshwar C. Wali (born October 15, 1927) is the Distinguished Research Professor of Physics Emeritus[1] at Syracuse University's College of Arts and Sciences. He is a specialist in high energy physics, particularly symmetries and dynamics of elementary particles,[2] and as the author[3] of Chandra: A Biography of S. Chandrasekhar[4] and Cremona Violins: a physicist's quest for the secrets of St
  • 378
  • 22 Nov 2022
Biography
Kam-Biu Luk
Kam-Biu Luk (Chinese: 陸錦標, born 1953) is a professor of physics, with a focus on particle physics, at UC Berkeley and a senior faculty member in the Lawrence Berkeley National Laboratory's physics division.[1] Luk has conducted research on neutrino oscillation and CP violation. Luk and his collaborator Yifang Wang were awarded the 2014 Panofsky Prize “for their leadership of the Daya Bay
  • 404
  • 23 Nov 2022
Topic Review
Kaleidoscope
A kaleidoscope (/kəˈlaɪdəskoʊp/) is an optical instrument with two or more reflecting surfaces (or mirrors) tilted to each other at an angle, so that one or more (parts of) objects on one end of the mirrors are seen as a regular symmetrical pattern when viewed from the other end, due to repeated reflection. The reflectors are usually enclosed in a tube, often containing on one end a cell with loose, colored pieces of glass or other transparent (and/or opaque) materials to be reflected into the viewed pattern. Rotation of the cell causes motion of the materials, resulting in an ever-changing view being presented.
  • 1.7K
  • 04 Nov 2022
Topic Review
Kairos
Kairos (καιρός) is an Ancient Greek word meaning the right, critical, or opportune moment. The ancient Greeks had two words for time: chronos (χρόνος) and kairos. The former refers to chronological or sequential time, while the latter signifies a proper or opportune time for action. While chronos is quantitative, kairos has a qualitative, permanent nature. Kairos also means weather in Modern Greek. The plural, καιροί (kairoi (Ancient and Modern Greek)) means the times. Kairos is a term, idea, and practice that has been applied in several fields including classical rhetoric, modern rhetoric, digital media, Christian theology, and science.
  • 2.2K
  • 07 Oct 2022
  • Page
  • of
  • 130
Video Production Service