Topic Review
Reference Point Indentation
Reference Point Indentation (RPI) refers to a specialized form of indentation testing. RPI utilizes a unique method of measurement by establishing a relative reference point at the location of measurement. This unique capability makes it possible to measure materials that are in motion, oddly shaped, visco-elastic, or that may be coated or covered by another, softer material. Unlike traditional indentation testing, RPI testing uses the location of measurement as the relative displacement reference position. Indentation itself is perhaps the most commonly applied means of testing the mechanical properties of materials. The technique has its origins in the Mohs scale of mineral hardness, in which materials are ranked according to what they can scratch and are, in turn, scratched by. The characterization of solids in this way takes place on an essentially discrete scale, so much effort has been expended in order to develop techniques for evaluating material hardness over a continuous range. Hence, the adoption of the Meyer, Knoop, Brinell, Rockwell, and Vickers hardness tests. More recently (ca. 1975), nanoindentation techniques have been established as the primary tool for investigating the hardness of small volumes of material. However, even more recently (ca. 2006), interest in measuring functional roles of biomaterials drove the development of the Reference Point Indentation technique. New research in field such as biomaterials has led scientists to begin considering materials as complex systems that behave differently than the constituent parts. For example, materials like bone are hierarchical and made of many components including calcium, collagen, water, and non-collagenous proteins. Each of these components has unique material properties. When combined to form bone, the function of the tissue is different than any one constituent. Understanding this mechanical system is becoming a new field of research called Materiomics. RPI specifically aims to aid materiomics researchers understand the functional capabilities of these types of materials at a relevant length-scale.
  • 469
  • 01 Nov 2022
Topic Review
Triboelectric Nanogenerators Based on 2D Materials
The development and production of nanogenerators provide a promising solution to address the energy crisis. Triboelectric nanogenerators, in particular, have attracted significant attention due to their portability, stability, high energy conversion efficiency, and compatibility with a wide range of materials. Triboelectric nanogenerators (TENGs) have many potential applications in various fields, such as artificial intelligence (AI) and the Internet of Things (IoT). Additionally, by virtue of their remarkable physical and chemical properties, two-dimensional (2D) materials, such as graphene, transition metal dichalcogenides (TMDs), hexagonal boron nitride (h-BN), MXenes, and layered double hydroxides (LDHs), have played a crucial role in the advancement of TENGs. 
  • 468
  • 23 May 2023
Topic Review
Odd Radio Circles and Their Environment
Odd Radio Circles (ORCs) are unexpected faint circles of diffuse radio emission discovered in recent wide deep radio surveys. They are typically about one arcmin in diameter, and may be spherical shells of synchrotron emission about a million light years in diameter, surrounding galaxies at a redshift of ∼0.2–0.6. Here we study the properties and environment of the known ORCs.
  • 467
  • 17 Nov 2021
Topic Review
Astrobiology Science and Technology for Exploring Planets
Astrobiology Science and Technology for Exploring Planets (ASTEP) was a program established by NASA to sponsor research projects that advance the technology and techniques used in planetary exploration. The objective was to enable the study of astrobiology and to aid the planning of extraterrestrial exploration missions while prioritizing science, technology, and field campaigns.
  • 468
  • 06 Oct 2022
Topic Review
List of 19th-Century Lunar Eclipses
See also: List of lunar eclipses, List of 18th-century lunar eclipses, and List of 20th-century lunar eclipses
  • 466
  • 25 Oct 2022
Topic Review
VSOP (Planets)
The semi-analytic planetary theory VSOP (French: Variations Séculaires des Orbites Planétaires) is a mathematical model describing long-term changes (secular variation) in the orbits of the planets Mercury to Neptune. The earliest modern scientific model considered only the gravitational attraction between the Sun and each planet, with the resulting orbits being unvarying Keplerian ellipses. In reality, all the planets exert slight forces on each other, causing slow changes in the shape and orientation of these ellipses. Increasingly complex analytical models have been made of these deviations, as well as efficient and accurate numerical approximation methods. VSOP was developed and is maintained (updated with the latest data) by the scientists at the Bureau des Longitudes in Paris. The first version, VSOP82, computed only the orbital elements at any moment. An updated version, VSOP87, computed the positions of the planets directly at any moment, as well as their orbital elements with improved accuracy. At present, the difference between computational predictions and observations is so small that the model seems essentially complete in its physical principles. Such hypothetical deviations are often referred to as post-Keplerian effects.
  • 466
  • 28 Nov 2022
Topic Review
PSR J1614–2230
PSR J1614–2230 is a neutron star in a binary system with a white dwarf. It was discovered in 2006 with the Parkes telescope in a survey of unidentified gamma ray sources in the Energetic Gamma Ray Experiment Telescope catalog. PSR J1614–2230 is a millisecond pulsar, a type of neutron star, that spins on its axis roughly 317 times per second, corresponding to a period of 3.15 milliseconds. Like all pulsars, it emits radiation in a beam, similar to a lighthouse. Emission from PSR J1614–2230 is observed as pulses at the spin period of PSR J1614–2230. The pulsed nature of its emission allows for the arrival of individual pulses to be timed. By measuring the arrival time of pulses, astronomers observed the delay of pulse arrivals from PSR J1614–2230 when it was passing behind its companion from the vantage point of Earth. By measuring this delay, known as the Shapiro delay, astronomers determined the mass of PSR J1614–2230 and its companion. The team performing the observations found that the mass of PSR J1614–2230 is 1.97 ± 0.04 M☉. This mass made PSR J1614–2230 the most massive known neutron star at the time of discovery, and rules out many neutron star equations of state that include exotic matter such as hyperons and kaon condensates. In 2013, a slightly higher neutron star mass measurement was announced for PSR J0348+0432, 2.01 ± 0.04 M☉. This confirmed the existence of such massive neutron stars using a different measuring technique.
  • 465
  • 04 Nov 2022
Topic Review
Biosensing Applications of GLAD-Fabricated Nanostructures
Glancing angle deposition (GLAD) is a technique for the fabrication of sculpted micro- and nanostructures under the conditions of oblique vapor flux incident and limited adatom diffusion. GLAD-based nanostructures are emerging platforms with broad sensing applications due to their high sensitivity, enhanced optical and catalytic properties, periodicity, and controlled morphology. GLAD-fabricated nanochips and substrates for chemical and biosensing applications are replacing conventionally used nanomaterials due to their broad scope, ease of fabrication, controlled growth parameters, and hence, sensing abilities.
  • 463
  • 13 Dec 2022
Topic Review
Permanent Magnets and How They Dictated History
The most efficient electric motor is a permanent-magnet synchronous motor. Their efficiency makes them popular for drive motors, power steering, stop-start motors, and regenerative braking generators. These motors use permanent magnets based on rare-earth elements (REEs), in particular neodymium-iron-boron (Nd-Fe-B) and samarium-cobalt (Sm-Co), because of their high maximum energy product (BH)max (a measure of the magnet’s performance), which is needed for the high efficiency and the high resistance to demagnetization. But there are still some challenges and gaps in their performance and application.
  • 464
  • 27 Feb 2024
Topic Review
Nano-grating Assisted Light Absorption and MSM-PDs Performance
The nano-grating assisted MSM-PDs are preordained to be decorous for many emerging and existing communication device applications. There have been a significant number of research works conducted on the implementation of nano-gratings, and still, more researches are ongoing to raise the performance of MSM-PDs particularly, in terms of enhancing the light absorption potentialities.
  • 464
  • 15 Dec 2021
  • Page
  • of
  • 119
Video Production Service