Topic Review
D0 Experiment
The DØ experiment (sometimes written D0 experiment, or DZero experiment) consists of a worldwide collaboration of scientists conducting research on the fundamental nature of matter. DØ was one of two major experiments (the other is the CDF experiment) located at the world's second highest-energy accelerator, the Tevatron Collider at the Fermilab in Batavia, Illinois, USA. The research is focused on precise studies of interactions of protons and antiprotons at the highest available energies. It involves an intense search for subatomic clues that reveal the character of the building blocks of the universe.
  • 668
  • 11 Oct 2022
Topic Review
Fine-Grained Change Detection
Fine-grained change detection in sensor data is very challenging for artificial intelligence though it is critically important in practice. It is the process of identifying differences in the state of an object or phenomenon where the differences are class-specific and are difficult to generalise. As a result, many recent technologies that leverage big data and deep learning struggle with this task.
  • 668
  • 12 Jul 2021
Topic Review
International Course-based Undergraduate Research Experiences
Course-based Undergraduate Research Experiences (CUREs) are a proven methodology for transforming short-term study abroad to yield higher impact and quality student outcomes, especially as they relate to teaching environmental sustainability.
  • 667
  • 30 Dec 2020
Topic Review
MOST (Satellite)
The Microvariability and Oscillations of Stars telescope, better known simply as MOST, was Canada 's first space telescope. Up until nearly 10 years after its launch it was also the smallest space telescope in orbit (for which its creators nicknamed it the "Humble Space Telescope", in reference to one of the largest, the Hubble). MOST was the first spacecraft dedicated to the study of asteroseismology, subsequently followed by the now-completed CoRoT and Kepler missions. It was also the first Canadian science satellite launched since ISIS II, 32 years previously.
  • 663
  • 02 Nov 2022
Topic Review
Primary Life Support System
A Primary (or Portable or Personal) Life Support System (or Subsystem) (PLSS), is a device connected to an astronaut or cosmonaut's spacesuit, which allows extra-vehicular activity with maximum freedom, independent of a spacecraft's life support system. The PLSS is generally worn like a backpack. The functions performed by the PLSS include: The air handling function of a PLSS is similar to that of a diving rebreather, in that exhaled gases are recycled into the breathing gas in a closed loop. When used in a microgravity environment, a separate propulsion system is generally needed for safety and control, since there is no physical connection to a spacecraft.
  • 663
  • 11 Nov 2022
Topic Review
Luch (Satellite)
The Luch (Russian: Луч; lit. Ray) Satellite Data Relay Network (SDRN), also referred to as Altair and Gelios, is a series of geosynchronous Russian relay satellites, used to transmit live TV images, communications and other telemetry from the Soviet/Russian space station Mir, the Russian Orbital Segment (ROS) of the International Space Station and other orbital spacecraft to the Earth, in a manner similar to that of the US Tracking and Data Relay Satellite System.
  • 663
  • 21 Nov 2022
Topic Review
Sakurai's Bell Inequality
The intention of a Bell inequality is to serve as a test of local realism or local hidden variable theories as against quantum mechanics, applying Bell's theorem, which shows them to be incompatible. Not all the Bell's inequalities that appear in the literature are in fact fit for this purpose. The one discussed here holds only for a very limited class of local hidden variable theories and has never been used in practical experiments. It is, however, discussed by John Bell in his "Bertlmann's socks" paper (Bell, 1981), where it is referred to as the "Wigner–d'Espagnat inequality" (d'Espagnat, 1979; Wigner, 1970). It is also variously attributed to Bohm (1951?) and Belinfante (1973). Note that the inequality is not really applicable either to electrons or photons, since it builds in no probabilistic properties in the measurement process. Much more realistic hidden variable theories can be devised, modelling spin (or polarisation, in optical Bell tests) as a vector and allowing for the fact that not all emitted particles will be detected.
  • 660
  • 17 Oct 2022
Topic Review
Mining for Gluon Saturation
Quantum chromodynamics (QCD) is the theory of strong interactions of quarks and gluons collectively called partons, the basic constituents of all nuclear matter. Its non-abelian character manifests in nature in the form of two remarkable properties: color confinement and asymptotic freedom. At high energies, perturbation theory can result in the growth and dominance of very gluon densities at small-x. If left uncontrolled, this growth can result in gluons eternally growing violating a number of mathematical bounds. The resolution to this problem lies by balancing gluon emissions by recombinating gluons at high energies : phenomena of gluon saturation. High energy nuclear and particle physics experiments have spent the past decades quantifying the structure of protons and nuclei in terms of their fundamental constituents confirming predicted extraordinary behavior of matter at extreme density and pressure conditions. In the process they have also measured seemingly unexpected phenomena. We will give a state of the art review of the underlying theoretical and experimental tools and measurements pertinent to gluon saturation physics. We will argue for the need of high energy electron-proton/ion colliders such as the proposed EIC (USA) and LHeC (Europe) to consolidate our knowledge of QCD in the small x kinematic domains. 
  • 659
  • 02 Sep 2021
Topic Review
Photoemission Electron Microscopy
Photoemission electron microscopy (PEEM, also called photoelectron microscopy, PEM) is a type of electron microscopy that utilizes local variations in electron emission to generate image contrast. The excitation is usually produced by ultraviolet light, synchrotron radiation or X-ray sources. PEEM measures the coefficient indirectly by collecting the emitted secondary electrons generated in the electron cascade that follows the creation of the primary core hole in the absorption process. PEEM is a surface sensitive technique because the emitted electrons originate from a shallow layer. In physics, this technique is referred to as PEEM, which goes together naturally with low-energy electron diffraction (LEED), and low-energy electron microscopy (LEEM). In biology, it is called photoelectron microscopy (PEM), which fits with photoelectron spectroscopy (PES), transmission electron microscopy (TEM), and scanning electron microscopy (SEM).
  • 658
  • 19 Oct 2022
Topic Review
Machine-Learning-Based Methods for Acoustic Emission Testing
Acoustic emission (AE) testing has obvious limitations regarding its reproducibility: as it was said, this type of test involves the formation or progression of cracks in the material. Even when referring to specimens of the same material, of the same dimensions, and subjected to the same load cycle, they do not necessarily produce the same results. This is especially true in the case of anisotropic and heterogeneous materials. Moreover, since the signals used by precursors are of modest entity, to be able to detect possible forms of energy in the material, it is necessary to use particularly sensitive sensors. Further problems arise due to the attenuation phenomena of the acoustic stress wave that is dispersed in the material as it propagates: just as the noise due to sources independent of the possible structural defect can disturb the detection methodology. To overcome these limitations, researchers adopted alternative methodologies to improve the results of the structural damage identification procedures. The capabilities demonstrated by the technologies based on ML in detecting patterns were immediately noticed by AE researchers. To make this nondestructive testing method even more effective, all the methodologies based on ML for the recognition of the stress wave can be applied during the detection phase of the acoustic emission generated by the source. In this way, it is possible to carry out a test that is robust regarding noise and effective in detecting waves of modest entity. The most common methodologies based on ML applied in the field of AE are presented below. ML is a branch of artificial intelligence whose goal is to allow machines to automatically learn something from experience, without the need for them to be programmed in advance. Experience is a collection of data, which can be fixed and immutable, or even expand over time. Learning can be carried out through two main approaches: supervised and unsupervised.
  • 657
  • 03 Nov 2022
  • Page
  • of
  • 118
Video Production Service