Topic Review
Laser Absorption Spectroscopy
Laser absorption spectroscopy (LAS) is an absorption spectroscopic method that employs a laser as the light source and measures the chemical concentration based on detection of a variation of laser beam intensity after transmission along the optical path. 
  • 5.5K
  • 10 Sep 2020
Topic Review
Laser Interference Lithography
Laser interference lithography (LIL) is a technique that allows for the simple, flexible, and rapid fabrication of high-resolution periodic structures over large areas without the use of masks. Different interference conditions can produce a wide range of light fields. When an LIL system is used to expose the substrate, a variety of periodic textured structures, such as periodic nanoparticles, dot arrays, hole arrays, and stripes, can be produced. The LIL technique can be used not only on flat substrates, but also on curved or partially curved substrates, taking advantage of the large depth of focus.
  • 330
  • 26 Jun 2023
Topic Review
Laser-Induced Breakdown Spectroscopy
Laser-Induced Breakdown Spectroscopy (LIBS) has been firstly introduced and proposed for analytical applications almost immediately after the invention of the laser in 1960. Since then, it has been proposed and today is widely used as an alternative analytical method for numerous applications. The operating principle of LIBS is quite simple and is based on the interaction of a powerful enough laser beam, focused usually on or in a sample, inducing a dielectric breakdown of the material, thus resulting in plasma formation consisting of excited and non-excited atoms and molecules, fragments of molecular species, electrons and ions, and emitting characteristic radiations, whose spectroscopic analysis can in principle provide the elemental composition fingerprint of the material. The required instrumentation consisting basically of a laser source, and a spectrometer/monochromator equipped with the appropriate light detector (nowadays being almost exclusively some CCD or ICCD type detector) is relatively simple and economically affordable, while significant progresses have been achieved to small size and/or portable equipment, facilitating largely the in situ operation.
  • 1.7K
  • 31 Aug 2021
Topic Review
Lattice Gauge Theory
In physics, lattice gauge theory is the study of gauge theories on a spacetime that has been discretized into a lattice. Gauge theories are important in particle physics, and include the prevailing theories of elementary particles: quantum electrodynamics, quantum chromodynamics (QCD) and particle physics' Standard Model. Non-perturbative gauge theory calculations in continuous spacetime formally involve evaluating an infinite-dimensional path integral, which is computationally intractable. By working on a discrete spacetime, the path integral becomes finite-dimensional, and can be evaluated by stochastic simulation techniques such as the Monte Carlo method. When the size of the lattice is taken infinitely large and its sites infinitesimally close to each other, the continuum gauge theory is recovered.
  • 338
  • 25 Nov 2022
Topic Review
Lattice Model
In physics, a lattice model is a physical model that is defined on a lattice, as opposed to the continuum of space or spacetime. Lattice models originally occurred in the context of condensed matter physics, where the atoms of a crystal automatically form a lattice. Currently, lattice models are quite popular in theoretical physics, for many reasons. Some models are exactly solvable, and thus offer insight into physics beyond what can be learned from perturbation theory. Lattice models are also ideal for study by the methods of computational physics, as the discretization of any continuum model automatically turns it into a lattice model. The exact solution to many of these models (when they are solvable) includes the presence of solitons. Techniques for solving these include the inverse scattering transform and the method of Lax pairs, the Yang–Baxter equation and quantum groups. The solution of these models has given insights into the nature of phase transitions, magnetization and scaling behaviour, as well as insights into the nature of quantum field theory. Physical lattice models frequently occur as an approximation to a continuum theory, either to give an ultraviolet cutoff to the theory to prevent divergences or to perform numerical computations. An example of a continuum theory that is widely studied by lattice models is the QCD lattice model, a discretization of quantum chromodynamics. However, digital physics considers nature fundamentally discrete at the Planck scale, which imposes upper limit to the density of information, aka Holographic principle. More generally, lattice gauge theory and lattice field theory are areas of study. Lattice models are also used to simulate the structure and dynamics of polymers.
  • 432
  • 19 Oct 2022
Topic Review
Lead Halide Perovskites Opto-Electronic Devices
In Lead Halide Perovskites Opto-Electronic Devices, we will discuss the development in the LHP-based functional devices in recent years. After a brief presentation of the LHP's properties, we will focus on the functional devices including lasers, photodetectors, and modulators. Then the fabrication of the LHP-based devices will be presented, which is followed by the summary and outlook.
  • 586
  • 29 Apr 2021
Topic Review
Left-Right Asymmetry
Left-right asymmetry (LR asymmetry) refers to differences in structure (symmetry breaking) across the mediolateral (left and right) plane in animals. This plane is defined with respect to the anteroposterior and dorsoventral axes and is perpendicular to both. Because the left-right plane is not strictly an axis (as it is not established through a morphogen gradient), to create asymmetry, the left and right sides need to be patterned separately. LR asymmetry is pervasive throughout metazoans and present throughout every major lineage. Notable examples include the large and small claws of the fiddler crab, the left offset of the vertebrate heart, asymmetrical gut coiling in Drosophila melanogaster, and dextral (clockwise) and sinistral (counterclockwise) coiling of gastropods. This asymmetry can be restricted to a specific organ or feature, as in the crab claws, or be expressed throughout the entire body as in snails.
  • 779
  • 02 Nov 2022
Topic Review
Leo
Leo, the Lion, is one of the zodiac constellations, known for its distinctive shape resembling a lion's mane and head. It is one of the oldest recognized constellations, dating back to ancient civilizations such as the Mesopotamians, Egyptians, and Greeks. Leo is home to several bright stars and notable deep-sky objects.
  • 220
  • 15 Mar 2024
Topic Review
Leo Minor
Leo Minor, the Lesser Lion, is a small constellation located in the northern celestial hemisphere. Its name is Latin for "the smaller lion", in contrast to Leo, the larger lion. It lies between the larger and more recognizable Ursa Major to the north and Leo to the south. 
  • 245
  • 15 Mar 2024
Topic Review
Levitated Dipole Experiment
The Levitated Dipole Experiment (LDX) was an experiment investigating the generation of fusion power using the concept of a levitated dipole. The device was the first of its kind to test the levitated dipole concept and was funded by the US Department of Energy. The machine was also part of a collaboration between the MIT Plasma Science and Fusion Center and Columbia University, where another levitated dipole experiment, the Collisionless Terrella Experiment (CTX), was located. LDX ceased operations in November 2011 when its funding from the Department of Energy ended as resources were being diverted to tokamak research.
  • 687
  • 22 Nov 2022
  • Page
  • of
  • 118
Video Production Service