Topic Review
Imaging Techniques for Morphological Characterization of Magnetic Films
Microscopy imaging techniques are critical for the morphological characterization of thin films because they provide nanoscale structural and compositional information that impacts properties. Techniques discussed below reveal grain size, grain boundaries, surface roughness and interfaces, and defects at high resolution. When coupled with spectroscopy, microscopy may provide compositional mapping and magnetic information. This multiscale morphological information is key to elucidating structure–property relationships in thin films.
  • 196
  • 12 Dec 2023
Topic Review
Immersive Virtual Reality
Immersive Virtual Reality (IVR) is a simulated technology used to deliver multisensory information to people under different environmental conditions. When IVR is generally applied in urban planning and soundscape research, it reveals attractive possibilities for the assessment of urban sound environments with higher immersion for human participation. In virtual sound environments, various topics and measures are designed to collect subjective responses from participants under simulated laboratory conditions. Soundscape or noise assessment studies during virtual experiences adopt an evaluation approach similar to in situ methods. 
  • 1.3K
  • 02 Feb 2021
Topic Review
Impact of Nanostructured Silicon on Thermoelectric Performance
Nanostructured materials remarkably improve the overall properties of thermoelectric devices, mainly due to the increase in the surface-to-volume ratio. This behavior is attributed to an increased number of scattered phonons at the interfaces and boundaries of the nanostructures. Among many other materials, nanostructured Si was used to expand the power generation compared to bulk crystalline Si, which leads to a reduction in thermal conductivity. However, the use of nanostructured Si leads to a reduction in the electrical conductivity due to the formation of low dimensional features in the heavily doped Si regions. Accordingly, the fabrication of hybrid nanostructures based on nanostructured Si and other different nanostructured materials constitutes another strategy to combine a reduction in the thermal conductivity while keeping the good electrical conduction properties. 
  • 458
  • 08 Aug 2022
Topic Review
Impact of Nanotechnology
The impact of nanotechnology extends from its medical, ethical, mental, legal and environmental applications, to fields such as engineering, biology, chemistry, computing, materials science, and communications. Major benefits of nanotechnology include improved manufacturing methods, water purification systems, energy systems, physical enhancement, nanomedicine, better food production methods, nutrition and large-scale infrastructure auto-fabrication. Nanotechnology's reduced size may allow for automation of tasks which were previously inaccessible due to physical restrictions, which in turn may reduce labor, land, or maintenance requirements placed on humans. Potential risks include environmental, health, and safety issues; transitional effects such as displacement of traditional industries as the products of nanotechnology become dominant, which are of concern to privacy rights advocates. These may be particularly important if potential negative effects of nanoparticles are overlooked. Whether nanotechnology merits special government regulation is a controversial issue. Regulatory bodies such as the United States Environmental Protection Agency and the Health and Consumer Protection Directorate of the European Commission have started dealing with the potential risks of nanoparticles. The organic food sector has been the first to act with the regulated exclusion of engineered nanoparticles from certified organic produce, firstly in Australia and the UK, and more recently in Canada , as well as for all food certified to Demeter International standards
  • 13.5K
  • 18 Oct 2022
Topic Review
Implications of Gauge-Free Extended Electrodynamics
Recent tests measured an irrotational (curl-free) magnetic vector potential (A) that is contrary to classical electrodynamics (CED). A (irrotational) arises in extended electrodynamics (EED) that is derivable from the Stueckelberg Lagrangian. A (irrotational) implies an irrotational (gradient-driven) electrical current density, J. Consequently, EED is gauge-free and provably unique. EED predicts a scalar field that equals the quantity usually set to zero as the Lorenz gauge, making A and the scalar potential (F) independent and physically-measureable fields. EED predicts a scalar-longitudinal wave (SLW) that has an electric field along the direction of propagation together with the scalar field, carrying both energy and momentum. EED also predicts the scalar wave (SW) that carries energy without momentum.
  • 864
  • 01 May 2021
Topic Review
Industrial Applications of Nanotechnology
Nanotechnology is impacting the field of consumer goods, several products that incorporate nanomaterials are already in a variety of items; many of which people do not even realize contain nanoparticles, products with novel functions ranging from easy-to-clean to scratch-resistant. Examples of that car bumpers are made lighter, clothing is more stain repellant, sunscreen is more radiation resistant, synthetic bones are stronger, cell phone screens are lighter weight, glass packaging for drinks leads to a longer shelf-life, and balls for various sports are made more durable. Using nanotech, in the mid-term modern textiles will become "smart", through embedded "wearable electronics", such novel products have also a promising potential especially in the field of cosmetics, and has numerous potential applications in heavy industry. Nanotechnology is predicted to be a main driver of technology and business in this century and holds the promise of higher performance materials, intelligent systems and new production methods with significant impact for all aspects of society.
  • 718
  • 29 Nov 2022
Topic Review
Inelastic Neutron Scattering
Inelastic neutron scattering (INS) is a spectroscopy based on the energy analysis of neutrons after they have been scattered by a sample. A detected energy transfer can be related to a physical interaction of the corresponding atoms with their environment. An energy transfer of several meVs typically arises from vibrations of atoms. Thus, INS provides an amplitude-of-motion and neutron incoherent cross section weighted phonon density of states.  Given the much higher incoherent scattering cross section of hydrogen relative to that of all other elements, INS is particular sensitive to hydrogen based vibrations. The method is widely used in condensed matter physics and solid state chemistry, because the vibrational properties of matter define various physical properties such as the heat capacity. If used as a fingerprint method, INS can be used to characterize chemical bonds both in the bulk as well as on the surface.
  • 7.3K
  • 30 Oct 2020
Topic Review
Inertial Confinement Fusion
Inertial confinement fusion (ICF) is a type of fusion energy research that attempts to initiate nuclear fusion reactions by heating and compressing a fuel target, typically in the form of a pellet that most often contains a mixture of deuterium and tritium. Typical fuel pellets are about the size of a pinhead and contain around 10 milligrams of fuel. To compress and heat the fuel, energy is delivered to the outer layer of the target using high-energy beams of laser light, electrons or ions, although for a variety of reasons, almost all ICF devices (As of 2015) have used lasers. The heated outer layer explodes outward, producing a reaction force against the remainder of the target, accelerating it inwards, compressing the target. This process is designed to create shock waves that travel inward through the target. A sufficiently powerful set of shock waves can compress and heat the fuel at the center so much that fusion reactions occur. ICF is one of two major branches of fusion energy research, the other being magnetic confinement fusion. When it was first proposed in the early 1970s, ICF appeared to be a practical approach to power production and the field flourished. Experiments during the 1970s and '80s demonstrated that the efficiency of these devices was much lower than expected, and reaching ignition would not be easy. Throughout the 1980s and '90s, many experiments were conducted in order to understand the complex interaction of high-intensity laser light and plasma. These led to the design of newer machines, much larger, that would finally reach ignition energies. The largest operational ICF experiment is the National Ignition Facility (NIF) in the US, designed using the decades-long experience of earlier experiments. Like those earlier experiments, however, NIF has failed to reach ignition and is, as of 2015, generating about ​1⁄3 of the required energy levels.
  • 2.4K
  • 29 Sep 2022
Topic Review
Inflammatory Biomarker Responses to Whole-Body Vibration
Inflammation is considered to be a vital defense mechanism for health, acting as a protective response of the immune system through a satisfactory inflammatory biomarker response (IBR). IBR, as well as being beneficial to the organism, can be also responsible for a variety of chronic inflammatory diseases. Whole-body vibration (WBV) exercise is a type of physical exercise that can act on inflammation responses due its capacity for stimulating the sensory components that promote systemic responses.
  • 384
  • 17 Jan 2023
Topic Review
Infrastructure
Infrastructure is the set of fundamental facilities and systems serving a country, city, or other area, including the services and facilities necessary for its economy to function. Infrastructure is composed of public and private physical structures such as roads, railways, bridges, tunnels, water supply, sewers, electrical grids, and telecommunications (including Internet connectivity and broadband speeds). In general, it has also been defined as "the physical components of interrelated systems providing commodities and services essential to enable, sustain, or enhance societal living conditions". There are two general types of ways to view infrastructure: hard and soft. Hard infrastructure refers to the physical networks necessary for the functioning of a modern industry. This includes roads, bridges, railways, etc. Soft infrastructure refers to all the institutions that maintain the economic, health, social, and cultural standards of a country. This includes educational programs, official statistics, parks and recreational facilities, law enforcement agencies, and emergency services. The word infrastructure has been used in French since 1875 and in English since 1887, originally meaning "The installations that form the basis for any operation or system". The word was imported from French, where it was already used for establishing a roadbed of substrate material, required before railroad tracks or constructed pavement could be laid on top of it. The word is a combination of the Latin prefix "infra", meaning "below", as many of these constructions are underground (for example, tunnels, water and gas systems, and railways), and the French word "structure" (derived from the Latin word "structure"). The army use of the term achieved currency in the United States after the formation of NATO in the 1940s, and by 1970 was adopted by urban planners in its modern civilian sense.
  • 1.6K
  • 15 Nov 2022
  • Page
  • of
  • 118
Video Production Service