Topic Review
SPOT (Satellite)
SPOT (French: Satellite Pour l’Observation de la Terre, lit. "Satellite for observation of Earth") is a commercial high-resolution optical imaging Earth observation satellite system operating from space. It is run by Spot Image, based in Toulouse, France . It was initiated by the CNES (Centre national d'études spatiales – the French space agency) in the 1970s and was developed in association with the SSTC (Belgian scientific, technical and cultural services) and the Swedish National Space Board (SNSB). It has been designed to improve the knowledge and management of the Earth by exploring the Earth's resources, detecting and forecasting phenomena involving climatology and oceanography, and monitoring human activities and natural phenomena. The SPOT system includes a series of satellites and ground control resources for satellite control and programming, image production, and distribution. Earlier satellites were launched using the European Space Agency's Ariane 2, 3, and 4 rockets, while SPOT 6 and SPOT 7 were launched by the Indian PSLV.
  • 541
  • 24 Nov 2022
Topic Review
Spins in Semiconductor Nanoparticles
- Spin-dependent phenomena in semiconductors are analyzed starting from a theory of the dynamic nuclear polarization via numerous insightful findings in the realm of characterization and control through the nuclear spin polarization in nanoparticles and their aggregates into microparticles as potential contrast agents for magnetic resonance imaging (MRI) applications.  - Electron spin-dependent process of the photosensitized generation of singlet oxygen in porous silicon (Si) for photodynamic therapy application and design of Si-based nanoparticles with electron spin centers for MRI contrasting for cancer theranostics are discussed.  
  • 1.1K
  • 12 Jan 2021
Topic Review
Spin-½
In quantum mechanics, spin is an intrinsic property of all elementary particles. All known fermions, the particles that constitute ordinary matter, have a spin of 1/2. The spin number describes how many symmetrical facets a particle has in one full rotation; a spin of 1/2 means that the particle must be rotated by two full turns (through 720°) before it has the same configuration as when it started. Particles having net spin 1/2 include the proton, neutron, electron, neutrino, and quarks. The dynamics of spin-1/2 objects cannot be accurately described using classical physics; they are among the simplest systems which require quantum mechanics to describe them. As such, the study of the behavior of spin-1/2 systems forms a central part of quantum mechanics.
  • 1.9K
  • 09 Nov 2022
Topic Review
Spin
Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles (hadrons) and atomic nuclei. Spin is one of two types of angular momentum in quantum mechanics, the other being orbital angular momentum. The orbital angular momentum operator is the quantum-mechanical counterpart to the classical angular momentum of orbital revolution and appears when there is periodic structure to its wavefunction as the angle varies. For photons, spin is the quantum-mechanical counterpart of the polarization of light; for electrons, the spin has no classical counterpart. The existence of electron spin angular momentum is inferred from experiments, such as the Stern–Gerlach experiment, in which silver atoms were observed to possess two possible discrete angular momenta despite having no orbital angular momentum. The existence of the electron spin can also be inferred theoretically from the spin–statistics theorem and from the Pauli exclusion principle—and vice versa, given the particular spin of the electron, one may derive the Pauli exclusion principle. Spin is described mathematically as a vector for some particles such as photons, and as spinors and bispinors for other particles such as electrons. Spinors and bispinors behave similarly to vectors: they have definite magnitudes and change under rotations; however, they use an unconventional "direction". All elementary particles of a given kind have the same magnitude of spin angular momentum, though its direction may change. These are indicated by assigning the particle a spin quantum number. The SI unit of spin is the same as classical angular momentum (i.e., N·m·s, J·s, or kg·m2·s−1). In practice, spin is given as a dimensionless spin quantum number by dividing the spin angular momentum by the reduced Planck constant ħ, which has the same dimensions as angular momentum, although this is not the full computation of this value. Very often, the "spin quantum number" is simply called "spin". The fact that it is a quantum number is implicit.
  • 1.5K
  • 27 Oct 2022
Topic Review
Spectrum
A spectrum (plural spectra or spectrums) is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors in visible light after passing through a prism. As scientific understanding of light advanced, it came to apply to the entire electromagnetic spectrum. It thereby became a mapping of a range of magnitudes (wavelengths) to a range of qualities, which are the perceived "colors of the rainbow" and other properties which correspond to wavelengths that lie outside of the visible light spectrum. Spectrum has since been applied by analogy to topics outside optics. Thus, one might talk about the "spectrum of political opinion", or the "spectrum of activity" of a drug, or the "autism spectrum". In these uses, values within a spectrum may not be associated with precisely quantifiable numbers or definitions. Such uses imply a broad range of conditions or behaviors grouped together and studied under a single title for ease of discussion. Nonscientific uses of the term spectrum are sometimes misleading. For instance, a single left–right spectrum of political opinion does not capture the full range of people's political beliefs. Political scientists use a variety of biaxial and multiaxial systems to more accurately characterize political opinion. In most modern usages of spectrum there is a unifying theme between the extremes at either end. This was not always true in older usage.
  • 1.5K
  • 11 Nov 2022
Topic Review
Spectroelectrochemistry
Spectroelectrochemistry (SEC) is a set of multi-response analytical techniques in which complementary chemical information (electrochemical and spectroscopic) is obtained in a single experiment. Spectroelectrochemistry provides a whole vision of the phenomena that take place in the electrode process. The first spectroelectrochemical experiment was carried out by Theodore Kuwana, PhD, in 1964. The main objective of spectroelectrochemical experiments is to obtain simultaneous, time-resolved and in-situ electrochemical and spectroscopic information on reactions taking place on the electrode surface. The base of the technique consist in studying the interaction of a beam of electromagnetic radiation with the compounds involved in these reactions. The changes of the optical and electrical signal allow us to understand the evolution of the electrode process. The techniques on which the spectroelectrochemistry is based are: Spectroelectrochemistry provides molecular, thermodynamic and kinetic information of reagents, products and/or intermediates involved in the electron transfer process.
  • 423
  • 11 Nov 2022
Topic Review
Spectrochemistry
Spectrochemistry is the application of spectroscopy in several fields of chemistry. It includes analysis of spectra in chemical terms, and use of spectra to derive the structure of chemical compounds, and also to qualitatively and quantitively analyze their presence in the sample. It is a method of chemical analysis that relies on the measurement of wavelengths and intensity of electromagnetic radiation.
  • 446
  • 30 Oct 2022
Topic Review
Speckle Interferometry
Speckle imaging describes a range of high-resolution astronomical imaging techniques based on the analysis of large numbers of short exposures that freeze the variation of atmospheric turbulence. They can be divided into the shift-and-add ("image stacking") method and the speckle interferometry methods. These techniques can dramatically increase the resolution of ground-based telescopes, but are limited to bright targets.
  • 718
  • 15 Nov 2022
Topic Review
Specific Relative Angular Momentum
In celestial mechanics the specific relative angular momentum [math]\displaystyle{ \vec{h} }[/math] plays a pivotal role in the analysis of the two-body problem. One can show that it is a constant vector for a given orbit under ideal conditions. This essentially proves Kepler's second law. It's called specific angular momentum because it's not the actual angular momentum [math]\displaystyle{ \vec{L} }[/math], but the angular momentum per mass. Thus, the word "specific" in this term is short for "mass-specific" or divided-by-mass: Thus the SI unit is: m2·s−1. [math]\displaystyle{ m }[/math] denotes the reduced mass [math]\displaystyle{ \frac{1}{m} = \frac{1}{m_1}+\frac{1}{m_2} }[/math].
  • 2.4K
  • 11 Nov 2022
Topic Review
Spatial Memory
In cognitive psychology and neuroscience, spatial memory is a form of memory responsible for the recording of information about one's environment and spatial orientation. For example, a person's spatial memory is required in order to navigate around a familiar city, just as a rat's spatial memory is needed to learn the location of food at the end of a maze. It is often argued that in both humans and animals, spatial memories are summarized as a cognitive map. Spatial memory has representations within working, short-term memory and long-term memory. Research indicates that there are specific areas of the brain associated with spatial memory. Many methods are used for measuring spatial memory in children, adults, and animals.
  • 2.9K
  • 04 Nov 2022
  • Page
  • of
  • 118
Video Production Service