Topic Review
Loopholes in Bell Tests
In Bell tests, there may be problems of experimental design or set-up that affect the validity of the experimental findings. These problems are often referred to as "loopholes". See the article on Bell's theorem for the theoretical background to these experimental efforts (see also John Stewart Bell). The purpose of the experiment is to test whether nature is best described using a local hidden-variable theory or by the quantum entanglement theory of quantum mechanics. The "detection efficiency", or "fair sampling" problem is the most prevalent loophole in optical experiments. Another loophole that has more often been addressed is that of communication, i.e. locality. There is also the "disjoint measurement" loophole which entails multiple samples used to obtain correlations as compared to "joint measurement" where a single sample is used to obtain all correlations used in an inequality. To date, no test has simultaneously closed all loopholes. Ronald Hanson of the Delft University of Technology claims the first Bell experiment that closes both the detection and the communication loopholes. (This was not an optical experiment in the sense discussed below; the entangled degrees of freedom were electron spins rather than photon polarization.) Nevertheless, correlations of classical optical fields also violate Bell's inequality. In some experiments there may be additional defects that make "local realist" explanations of Bell test violations possible; these are briefly described below. Many modern experiments are directed at detecting quantum entanglement rather than ruling out local hidden-variable theories, and these tasks are different since the former accepts quantum mechanics at the outset (no entanglement without quantum mechanics). This is regularly done using Bell's theorem, but in this situation the theorem is used as an entanglement witness, a dividing line between entangled quantum states and separable quantum states, and is as such not as sensitive to the problems described here. In October 2015, scientists from the Kavli Institute of Nanoscience reported that the quantum nonlocality phenomenon is supported at the 96% confidence level based on a "loophole-free Bell test" study. These results were confirmed by two studies with statistical significance over 5 standard deviations which were published in December 2015. However, Alain Aspect writes that No experiment can be said to be totally loophole-free.
  • 1.7K
  • 31 Oct 2022
Topic Review
Yellow Supergiant Star
A yellow supergiant (YSG) is a star, generally of spectral type F or G, having a supergiant luminosity class (e.g. Ia or Ib). They are stars that have evolved away from the main sequence, expanding and becoming more luminous. Yellow supergiants are smaller than red supergiants; naked eye examples include Polaris. Many of them are variable stars, mostly pulsating Cepheids such as δ Cephei itself.
  • 1.7K
  • 03 Nov 2022
Topic Review
Different Anisotropic-Strata Interface and Refraction
The strata model inside the earth is close to physical reality. The strata layers can be macro-anisotropic but transversely isotropic, where some are vertically symmetric and the others are not. The macroscopic anisotropy is significant for seismic waves with long wave-length regarding propagation, reflection, refraction, and polarization. This topic review provides the most recent theoretical development related to geophysical applications. 
  • 1.7K
  • 03 Nov 2020
Topic Review
Weight
In science and engineering, the weight of an object is the force acting on the object due to gravity. Some standard textbooks define weight as a vector quantity, the gravitational force acting on the object. Others define weight as a scalar quantity, the magnitude of the gravitational force. Others define it as the magnitude of the reaction force exerted on a body by mechanisms that keep it in place: the weight is the quantity that is measured by, for example, a spring scale. Thus, in a state of free fall, the weight would be zero. In this sense of weight, terrestrial objects can be weightless: ignoring air resistance, the famous apple falling from the tree, on its way to meet the ground near Isaac Newton, would be weightless. The unit of measurement for weight is that of force, which in the International System of Units (SI) is the newton. For example, an object with a mass of one kilogram has a weight of about 9.8 newtons on the surface of the Earth, and about one-sixth as much on the Moon. Although weight and mass are scientifically distinct quantities, the terms are often confused with each other in everyday use (i.e. comparing and converting force weight in pounds to mass in kilograms and vice versa). Further complications in elucidating the various concepts of weight have to do with the theory of relativity according to which gravity is modeled as a consequence of the curvature of spacetime. In the teaching community, a considerable debate has existed for over half a century on how to define weight for their students. The current situation is that a multiple set of concepts co-exist and find use in their various contexts.
  • 1.7K
  • 19 Oct 2022
Topic Review
Kelvin–Stokes Theorem
The Kelvin–Stokes theorem, named after Lord Kelvin and George Stokes, also known as the Stokes' theorem, the fundamental theorem for curls or simply the curl theorem, is a theorem in vector calculus on [math]\displaystyle{ \mathbb{R}^3 }[/math]. Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. If a vector field [math]\displaystyle{ \mathbf{A} = (P(x, y, z), Q(x, y, z), R(x, y, z)) }[/math] is defined in a region with smooth oriented surface [math]\displaystyle{ \Sigma }[/math] and has first order continuous partial derivatives then: where [math]\displaystyle{ \partial \Sigma }[/math] is boundary of region with smooth surface [math]\displaystyle{ \Sigma }[/math]. The above classical Kelvin-Stokes theorem can be stated in one sentence: The line integral of a vector field over a loop is equal to the flux of its curl through the enclosed surface. The Kelvin–Stokes theorem is a special case of the "generalized Stokes' theorem." In particular, a vector field on [math]\displaystyle{ \mathbb{R}^3 }[/math] can be considered as a 1-form in which case its curl is its exterior derivative, a 2-form.
  • 1.7K
  • 02 Nov 2022
Topic Review
Timeline of Epochs in Cosmology
The timeline of cosmological epochs outlines the formation and subsequent evolution of the Universe from the Big Bang (13.799 ± 0.021 billion years ago) to the present day. An epoch is a moment in time from which nature or situations change to such a degree that it marks the beginning of a new era or age. Times on this list are measured from the moment of the Big Bang.
  • 1.7K
  • 21 Nov 2022
Topic Review
Acoustical Goos-Hänchen Effect
Goos–Hänchen effect was an important optical phenomenon. When an optical wave propagates from a denser medium to a thinner medium, the total reflection generates coherent interference. The final propagated wave yields a lateral displacement relative to the incidence wave at the interface. Even though optics has a coherent effect on the total reflection of a finite-sized wave and an acoustic wave is incoherent with a non-total reflection of different frequency components, recent research shows that there is an analog Goos–Hänchen effect in acoustics. 
  • 1.7K
  • 14 Apr 2021
Topic Review
Anomalous Refraction from Anisotropy Media
The transversely isotropic media with a vertical axis of symmetry (VTI media) has been the most popular model for the sedimentary rocks in the interior of the earth. These rocks are usually isotropic within a given layer but strongly anisotropic from layer to layer. Reflection and refraction of acoustic waves between the adjacent rock layers have profound implications in geophysical applications. We discuss some anomalous reflection phenomena of the acoustic wave at the interface between the layered anisotropic rock media. 
  • 1.7K
  • 03 Nov 2020
Topic Review
High-Spectral-Resolution Lidar
High-spectral-resolution lidar (HSRL) is a powerful tool for atmospheric aerosol remote sensing. A ground-based high-spectral-resolution lidar (HSRL), operated at 532 nm wavelength, has been developed at Zhejiang University (ZJU) for aerosols and clouds studies. This lidar provides vertical profiles of aerosol scattering ratio together with lidar ratio and particle depolarization ratio at 532 nm. Determination of overlap function is a key step in the calibration of a high-spectral-resolution lidar (HSRL) and important guarantee of data retrieval, an iterative-based general determination (IGD) method for overlap function in HSRL is proposed. The standard method to retrieve the extinction coefficient from HSRL signals depends heavily on the signal-to-noise ratio (SNR). An iterative image reconstruction (IIR) method is proposed for the retrieval of the aerosol extinction coefficient based on HSRL data under low SNR condition. With the optical properties, a state-of-the-art method for feature detection and classification is proposed to automatically identify the features attributed to dust/polluted dust, urban/smoke, maritime aerosols, as well as ice and liquid water cloud during day and night.
  • 1.6K
  • 22 Feb 2021
Topic Review
Elasticity
In physics and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate loads are applied to them; if the material is elastic, the object will return to its initial shape and size after removal. This is in contrast to plasticity, in which the object fails to do so and instead remains in its deformed state. The physical reasons for elastic behavior can be quite different for different materials. In metals, the atomic lattice changes size and shape when forces are applied (energy is added to the system). When forces are removed, the lattice goes back to the original lower energy state. For rubbers and other polymers, elasticity is caused by the stretching of polymer chains when forces are applied. Hooke's law states that the force required to deform elastic objects should be directly proportional to the distance of deformation, regardless of how large that distance becomes. This is known as perfect elasticity, in which a given object will return to its original shape no matter how strongly it is deformed. This is an ideal concept only; most materials which possess elasticity in practice remain purely elastic only up to very small deformations, after which plastic (permanent) deformation occurs. In engineering, the elasticity of a material is quantified by the elastic modulus such as the Young's modulus, bulk modulus or shear modulus which measure the amount of stress needed to achieve a unit of strain; a higher modulus indicates that the material is harder to deform. The SI unit of this modulus is the pascal (Pa). The material's elastic limit or yield strength is the maximum stress that can arise before the onset of plastic deformation. Its SI unit is also the pascal (Pa).
  • 1.6K
  • 06 May 2023
  • Page
  • of
  • 118
Video Production Service