Topic Review
Cold Atmospheric Pressure Plasma Technology
Cold atmospheric pressure plasma (CAPP) technology has received substantial attention due to its valuable properties including operational simplicity, low running cost, and environmental friendliness. Several different gases (air, nitrogen, helium, argon) and techniques (corona discharge, dielectric barrier discharge, plasma jet) can be used to generate plasma at atmospheric pressure and low temperature. Plasma treatment is routinely used in materials science to modify the surface properties (e.g., wettability, chemical composition, adhesion) of a wide range of materials (e.g., polymers, textiles, metals, glasses). Moreover, CAPP seems to be a powerful tool for the inactivation of various pathogens (e.g., bacteria, fungi, viruses) in the food industry (e.g., food and packing material decontamination, shelf life extension), agriculture (e.g., disinfection of seeds, fertilizer, water, soil) and medicine (e.g., sterilization of medical equipment, implants). Plasma medicine also holds great promise for direct therapeutic treatments in dentistry (tooth bleaching), dermatology (atopic eczema, wound healing) and oncology (melanoma, glioblastoma).
  • 2.1K
  • 10 Jun 2021
Topic Review
Colloidal Quantum Dots-Based Upconversion Devices
Colloidal quantum dots (CQD) have narrow emission linewidth and adjustable bandgap, so that CQD based infrared detectors can realize a widely tunable infrared spectral range. In addition, the luminescence spectrum of CQDs is extremely narrow, the color saturation and purity are high, and the optical stability is excellent, which can be obtained by solution procession. Therefore, CQDs-based LEDs (QLEDs) have excellent performances of a wide color gamut, long life, and low cost. For CQD baesd upconverters, except for the top electrode, the entire device can be prepared by solution method, which greatly simplifies the preparation of the device and make the upconverters are available for use in the fields of flexible devices.
  • 585
  • 31 Mar 2022
Topic Review
Colloids in Curved Space
Self-assembly of nanoscale objects is of essential importance in materials science, condensed matter physics, and biophysics. Curvature modifies the principles and sequence of self-assembly in Euclidean space, resulting in unique and more complex structures. Understanding self-assembly behavior in curved space is not only instrumental for designing structural building blocks and assembly processes from a bottom-up perspective but is also critically important for delineating various biological systems.
  • 122
  • 11 Jan 2024
Topic Review
Columba
Columba, Latin for "dove," is a constellation in the southern celestial hemisphere. First introduced by Dutch astronomer Petrus Plancius in the late 16th century, it represents the dove released by Noah from the ark in the biblical story of the Great Flood. Despite its small size, Columba contains several notable celestial objects, including the famous globular cluster NGC 1851 and various open star clusters, making it an intriguing target for astronomers and stargazers alike.
  • 184
  • 08 Mar 2024
Topic Review
Coma Berenices
Coma Berenices, Latin for "Berenice's Hair," is a constellation in the northern celestial hemisphere. Named after the ancient Egyptian queen Berenice II, it is renowned for its distinctive asterism resembling a flowing mane of hair. Coma Berenices contains several notable celestial objects, including the Coma Cluster of galaxies.
  • 176
  • 08 Mar 2024
Topic Review
Compact Fusion Reactor
The Lockheed Martin Compact Fusion Reactor (CFR) is a proposed nuclear fusion reactor project at Lockheed Martin’s Skunk Works. Its high-beta configuration, which implies that the ratio of plasma pressure to magnetic pressure is greater than or equal to 1 (compared to tokamak designs' 0.05), allows a compact fusion reactor (CFR) design and expedited development. The CFR chief designer and technical team lead, Thomas McGuire studied fusion as a source of space propulsion in response to a NASA desire to improve travel times to Mars.
  • 520
  • 21 Nov 2022
Topic Review
Complementarity
In physics, complementarity is a conceptual aspect of quantum mechanics that Niels Bohr regarded as an essential feature of the theory. The complementarity principle holds that objects have certain pairs of complementary properties which cannot all be observed or measured simultaneously. An example of such a pair is position and momentum. Bohr considered one of the foundational truths of quantum mechanics to be the fact that setting up an experiment to measure one quantity of a pair, for instance the position of an electron, excludes the possibility of measuring the other, yet understanding both experiments is necessary to characterize the object under study. In Bohr's view, the behavior of atomic and subatomic objects cannot be separated from the measuring instruments that create the context in which the measured objects behave. Consequently, there is no "single picture" that unifies the results obtained in these different experimental contexts, and only the "totality of the phenomena" together can provide a completely informative description.
  • 677
  • 14 Nov 2022
Topic Review
Complex flow and heat transfer characteristics in microchannels
Continuously improving heat transfer efficiency is one of the important goals in the energy field. Compact heat exchangers characterized by microscale flow and heat transfer have successfully provided solutions for this purpose. However, as the characteristic scale of the channels decreases, the flow and heat transfer characteristics may differ from those at the conventional scale. When considering the influence of scale effects and changes in special fluid properties, the flow and heat transfer process becomes more complex. The conclusions of the relevant studies have not been unified, and there are even disagreements in some aspects. Therefore, further research is needed to obtain a sufficient understanding of flow structure and heat transfer mechanisms in microchannels. There are a lot of research about microscale flow and heat transfer, focusing on the flow and heat transfer mechanisms in microchannels, which is elaborated into the following two perspectives: one is the microscale single-phase flow and heat transfer that only considers the influence of scale effects, the other is the special heat transfer phenomena brought about by the coupling of microscale flow with special fluids (fluid with phase change (pseudophase change)). The microscale flow and heat transfer mechanisms under the influence of multiple factors, including scale effects (such as rarefaction, surface roughness, axial heat conduction, and compressibility) and special fluids, are investigated, which can meet the specific needs for the design of various microscale heat exchangers.
  • 353
  • 03 Aug 2023
Topic Review
Complex Nonlinear Biophysical Brain Dynamics
The human brain is a complex network whose ensemble time evolution is directed by the cumulative interactions of its cellular components, such as neurons and glia cells. Coupled through chemical neurotransmission and receptor activation, these individuals interact with one another to varying degrees by triggering a variety of cellular activity from internal biological reconfigurations to external interactions with other network agents. Consequently, such local dynamic connections mediating the magnitude and direction of influence cells have on one another are highly nonlinear and facilitate, respectively, nonlinear and potentially chaotic multicellular higher-order collaborations. Thus, as a statistical physical system, the nonlinear culmination of local interactions produces complex global emergent network behaviors, enabling the highly dynamical, adaptive, and efficient response of a macroscopic brain network.
  • 717
  • 07 Jun 2022
Topic Review
Composition (Objects)
Compositional objects are wholes instantiated by collections of parts. If an ontology wishes to permit the inclusion of compositional objects it must define which collections of objects are to be considered parts composing a whole. Mereology, the study of relationships between parts and their wholes, provides specifications on how parts must relate to one another in order to compose a whole.
  • 262
  • 04 Nov 2022
  • Page
  • of
  • 118
Video Production Service