Topic Review
Traditional Chinese Timekeeping
The traditional Chinese time systems refers to the time standards for divisions of the day used in China until the introduction of the Shixian calendar in 1628 at the beginning of the Qing dynasty.
  • 471
  • 30 Oct 2022
Topic Review
Traditional Chinese Star Names
Traditional Chinese star names (Chinese: 星名, xīng míng) are the names of stars used in ancient Chinese astronomy and astrology. Most of these names are enumerations within the respective Chinese constellations, but a few stars have traditional proper names.
  • 844
  • 29 Sep 2022
Topic Review
Topological and Dissipative Solitons in Liquid Crystals
Solitons are self-sustained localized packets of waves in nonlinear media that propagate without changing shape. They are found everywhere in our daily life from nerve pluses in our bodies to eyes of storms in the atmosphere and even density waves in galaxies. Solitons in liquid crystals have received increasing attention due to their importance in fundamental physical science and potential applications in various fields. 
  • 681
  • 21 Jan 2022
Topic Review
Tonti Diagram
The Tonti diagram, created by the Italian physicist and mathematician Enzo Tonti, is a diagram that classifies variables and equations of physical theories of classical and relativistic physics. The theories involved are: particle dynamics, analytical mechanics, mechanics of deformable solids, fluid mechanics, electromagnetism, gravitation, heat conduction, and irreversible thermodynamics. The classification stems from the observation that each physical variable has a well-defined association with a space and a time element, as shown in Fig. 1, which can be grasped from the corresponding global variable and from its measuring process.
  • 1.5K
  • 29 Sep 2022
Topic Review
Ton 618
Coordinates: 12h 28m 24.97s, +31° 28′ 37.7″ Ton 618 is a hyperluminous, broad-absorption-line, radio-loud quasar and Lyman-alpha blob located near the border of the constellations Canes Venatici and Coma Berenices, with the projected comoving distance of approximately 18.2 billion light-years from Earth. It possesses one of the most massive black holes ever found, with a mass of 66 billion M☉.
  • 40.9K
  • 24 Nov 2022
Topic Review
TiOPhotocatalysis
Catalysis on TiO2 nanomaterials in the presence of H2O and oxygen plays a crucial role in the advancement of many different fields, such as clean energy technologies, catalysis, disinfection, and bioimplants. Photocatalysis on TiO2 nanomaterials is well-established and has advanced in the last decades in terms of the understanding of its underlying principles and improvement of its efficiency. 
  • 348
  • 17 Jul 2023
Topic Review
Timoshenko-Ehrenfest Beam Theory
The Timoshenko-Ehrenfest beam theory was developed by Stephen Timoshenko and Paul Ehrenfest early in the 20th century. The model takes into account shear deformation and rotational bending effects, making it suitable for describing the behaviour of thick beams, sandwich composite beams, or beams subject to high-frequency excitation when the wavelength approaches the thickness of the beam. The resulting equation is of 4th order but, unlike Euler–Bernoulli beam theory, there is also a second-order partial derivative present. Physically, taking into account the added mechanisms of deformation effectively lowers the stiffness of the beam, while the result is a larger deflection under a static load and lower predicted eigenfrequencies for a given set of boundary conditions. The latter effect is more noticeable for higher frequencies as the wavelength becomes shorter (in principle comparable to the height of the beam or shorter), and thus the distance between opposing shear forces decreases. Rotary inertia effect was introduced by Bresse and Rayleigh. If the shear modulus of the beam material approaches infinity—and thus the beam becomes rigid in shear—and if rotational inertia effects are neglected, Timoshenko beam theory converges towards ordinary beam theory.
  • 12.2K
  • 20 Oct 2022
Topic Review
Timoshenko Beam Theory
The Timoshenko beam theory was developed by Stephen Timoshenko early in the 20th century. The model takes into account shear deformation and rotational bending effects, making it suitable for describing the behaviour of thick beams, sandwich composite beams, or beams subject to high-frequency excitation when the wavelength approaches the thickness of the beam. The resulting equation is of 4th order but, unlike Euler–Bernoulli beam theory, there is also a second-order partial derivative present. Physically, taking into account the added mechanisms of deformation effectively lowers the stiffness of the beam, while the result is a larger deflection under a static load and lower predicted eigenfrequencies for a given set of boundary conditions. The latter effect is more noticeable for higher frequencies as the wavelength becomes shorter (in principle comparable to the height of the beam or shorter), and thus the distance between opposing shear forces decreases. If the shear modulus of the beam material approaches infinity—and thus the beam becomes rigid in shear—and if rotational inertia effects are neglected, Timoshenko beam theory converges towards ordinary beam theory.
  • 1.3K
  • 15 Nov 2022
Topic Review
Timeline of Telescope Technology
The following timeline lists the significant events in the invention and development of the telescope.
  • 679
  • 18 Nov 2022
Topic Review
Timeline of Physical Chemistry
The timeline of physical chemistry lists the sequence of physical chemistry theories and discoveries in chronological order.
  • 256
  • 21 Nov 2022
  • Page
  • of
  • 118
Video Production Service